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A B S T R A C T   

The therapeutic effect of highly malignant triple negative breast cancer (TNBC) is negatively 
affected by the formation of tumor cell resistant clone and the severe toxicity of chemotherapy 
drugs to normal tissues. In accordance with research findings, in the comprehensive targeted 
therapy of TNBC, the nano delivery system effectively suppresses and kills tumor cells on the basis 
of its unique targeting properties as well as the ability to co-load, deliver, and release chemo-
therapeutic drugs, active gene fragments and immune enhancing factors, etc. When combined 
with photothermal ablation therapy, the synergism and toxicity reduction effect of chemotherapy 
drugs, the inhibition of tumor proliferation related genes as well as activation of immune system 
can be achieved. Nanoparticle delivery systems present a totally new way of drug design and 
usage, and change the pharmacokinetic characteristics of conventional chemotherapeutic drugs 
with significantly reduced adverse effects of some otherwise very toxic chemodrugs via targeted 
delivery. In this paper, a detailed review was carried out focusing on the research progress of 
nanoparticle delivery system in the comprehensive targeted therapy of TNBC. We also summarize 
the merits, shortcomings, perspectives and future developments of nanoparticle-drug delivery 
systems.   

1. Introduction 

Triple-negative breast cancer (TNBC) is a term that has historically been applied to cancers that lack expression of the estrogen 
receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). TNBC tends to behave more 
aggressively than other types of breast cancers. Unlike other breast cancer subtypes (i.e., ER-positive, HER2-positive subtypes), there 
are no approved targeted treatments available, although immunotherapy (in combination with chemotherapy) is available for those 
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with advanced TNBC that has over-expressed programmed cell death ligand 1 (PD-L1). Chemotherapy is recommended for women 
with TNBC tumor sizes larger than 0.5 cm or with lymph node positive TNBC (regardless of tumor sizes). Anthracycline-, alkylator-, 
and taxane-based chemotherapy regimens are the standard regimens for TNBC. These patients have a higher risk of relapse as 
compared to other breast cancer phenotypes, partly because of the development of drug resistance in TNBC. It was reported to be 
associated with the increase of drug efflux pump caused by abnormally elevated gene expression, the decrease of intracellular drug 
concentration, the decrease of drug uptake caused by the change of phospholipid structure in cell membrane, and the shielding/ 
changing of drug target [1-3]. Therefore, the therapeutic outcome of conventional chemodrug therapy is poor for the treatment of 
TNBC. Medicinal chemotherapy is considered to be an effective approach for the treatment of breast cancer, which, however, is 
accompanied by disadvantages, such as damages to normal tissues around the tumor or even other organs, resulting in severe mye-
losuppression and cardiotoxicity. Nowadays, the treatment process of TNBC has been developed via chemodrugs delivery by nano-
materials, the construction of nano treatment system [4], precise gene diagnosis [5], gene therapy [6], photothermal therapy [7], 
medicinal chemotherapy [8] and immunotherapy [9] on the basis of rapid development of nanomedicines. With its unique physical 
and chemical properties to co-load a variety of chemotherapy drugs, suppressive gene fragments and immune enhancers, etc., the 
nanoparticle delivery system can contribute to less adverse reactions, via targeted delivery, in the treatment process via specific 
photothermal ablation of tumor cells, which is an important tumor treatment strategy under research and development. 

According to Marques et al. [10], the two mechanisms by which nanocarriers can deliver drugs to tumors, are passive accumulation 
and active targeting [11]. Passive accumulation exploits some physicochemical properties of nanoparticles and, mainly, the patho-
physiological features of cancers [12,13]. Firstly, the size and the surface of nanoparticles must be controlled to avoid both renal 
clearance and scavenging by the mononuclear phagocyte system (MPS) and reticuloendothelial system (RES) and, thus, maximize 
blood circulation time [14,15]. It was well-reported in the literature that nanoparticles with hydrodynamic diameters smaller than ~ 
5.5 nm will be removed easily through renal clearance [16,17], whereas those with sizes larger than 50–100 nm tend to be removed by 
hepatic and splenic macrophages and accumulated in liver and spleen [18,19]. Secondly, solid tumors are characterized by an aberrant 
angiogenesis that leads to a leaky blood vasculature, of which the endothelial cell junctions are incomplete and disordered [20,21]. 
Nanoparticles with diameters in the range of 100–400 nm are expected to accumulate at tumor sites through the passive enhanced 
permeability and retention (EPR) effect by convection and diffusion processes[22,23]. In addition, the impaired lymphatic drainage in 
tumors promotes the retention of the nanocarriers [24,25]. The passive EPR strategy, however, does not work for all tumors, since 
some certain hypovascular tumors do not exhibit the EPR effect and the permeability of vessels may not be uniform throughout the 
whole tumor. In addition, passive accumulation may not be able to deliver chemodrugs evenly to the whole tumor tissues, since drug 
delivery process is in a random manner and is lack of control with uneven drug diffusion into tumor tissues [26-28]. Active targeting of 
tumors can overcome these limitations. 

This review paper summarizes the application of nanoparticle delivery systems in comprehensive treatment of TNBC, and 
concurrently provides potential references for the TNBC treatment. In the literature, there have been some reviews published in this 
field in recent years [29-35], for example, Pallabita Chowdhury, et al [33], reviewed various nanoparticle technology mediated de-
livery of chemotherapeutic agents for TNBC, and they also concluded novel biological and biomimetic nanomedicine for effective 
clinical translation for breast cancer treatment, including approaches to employ cellular (erythrocytes, leukocytes, neutrophils, 
monocytes/macrophages, and thrombocytes) and cell membrane cloaked nanoparticles. Vikas Jain, et al [34], discussed various 
nanocarriers (polymeric nanoparticles and micelles, metallic and inorganic NPs, and lipid-based NPs, etc) used to deliver chemo-
therapeutic agents to treat breast cancer (BC) and TNBC, and the application of nanomedicine such as CRISPR nanoparticle, exosomes 
and natural agent-based nanocarriers. Moreover, they also highlighted the role of breast cancer stem cells (BCSCs) in the recurrence of 
BC and TNBC, and discussed some nano-therapeutics targeting BCSCs. In addition to discussing the nanocarriers and nanoparticles 
mentioned above in detailed, Lahanya Guha, et al [35], also reviewed the molecular pathways in TNBC. However, when comparing 
with those articles, the importance and novelty of our review lie in that not only it is comprehensive and detailed, covering almost all 
the important parts of the above three articles, but it also thoroughly underscored the developments of nanoparticles with ligands 
responsive to tumor microenvironment, developed nano topical modifications, and clinical trials using nanoparticles. Specifically, we 
conducted this review focusing on TNBC to make this paper more straightforward. 

This review paper summarizes some important literature information which very little or none could be found in the previous 
review articles; including: 1) in-depth discussion of the molecular biological mechanisms (such as receptors, ligands, signal trans-
duction pathways, etc.) of the nano-drug delivery system acting on breast cancer cells or tissues; 2) full summarization of nanoparticle 
drug delivery systems from a clinical perspective, elaboration on specific treatment methods and strategies (such as nanoparticle-based 
gene therapy, photothermal therapy, and immunotherapy), and clinical trials of nanoparticle delivery systems for breast cancer 
treatment.; 3) focus on the most malignant triple negative breast cancer (TNBC), which cannot be cured using conventional modalities; 
4) explicitly pointing out the true beauty and spirits of using nanomedicines for treatment of cancers, such as tumor targeting, 
multidrug co-delivery, providing a totally new way of drug designs and usages, resolving multi-drug resistance problems, etc; 5) 
Comprehensive review covering a large number of 515 literature papers published up to December 2022 including many important 
ones, especially the related clinical applications of nanomedicines in treating TNBC. Therefore, the readers get to know more and in- 
depth research advances and applications of nano-delivery systems in breast cancer targeted treatment, the various microenvironment- 
sensitive nano delivery systems, the basic working principles and mechanisms, and clinical applications. 

2. Advanced nanoparticles for targeting at TNBC 

Some of nanocarriers reported for targeting at TNBC were summarized in Table 1 [36-87]. Targeted drug delivery system was 
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Table 1 
Some of nanocarriers used for targeting of TNBC.  

Nano-carrier Products Research Aims Key Findings Targeting efficacy Anti-tumor efficacy Problems Ref. 

Inorganic NP Photo- 
thermaltherapy 
using MWCNTs 

To examine whether 
breast cancer stem cells 
(BCSCs) are resistant to 
hyperthermia, and 
conquer such resistance 

BCSCs are sensitive to 
hyperthermia and lose long- 
term proliferative capacity; 
observed complete tumor 
regression and extended 
average lifespan. 

NA The combination of MWCNTs and 
laser exposure led to complete 
tumor regression and significantly 
enhanced overall survival (100%) 
relative to the control groups (p <
0.05). 

Induction of necrotic death may 
be therapeutically 
advantageous, since 
mechanisms of resistance to 
apoptotic cell death are 
bypassed. further studies will be 
required to elucidate the details 
of the interaction between NIR- 
stimulated nanotubes and the 
cancer cell surface that leads to 
cell death 

[437] 

Inorganic  
nanoparticle 

HA-SWCNT-DOX To develop a carbon 
nanotube product for 
targeted delivery of 
doxorubicin to improve 
breast cancer treatment 

Enhanced uptake of DOX by 
MDA-MB-231 cells, inhibited 
cell proliferation, growth, 
metastasis, and apoptosis, 

SWCNTs-DOX-HA achieved a 2.1-fold 
increase in cellular DOX fluorescent 
intensity than SWCNTs-DOX. 

SWCNTs-DOX, SWCNTs-DOX-HA 
and free DOX groups were 2.33 ±
0.56 %, 9.25 ± 1.62 %, 37.72 ±
1.03 % and 73.45 ± 1.54 %, 
respectively. At 48 h, the 
migration indexes of control, 
SWCNTs-DOX, SWCNTs-DOX-HA 
and free DOX were 73.8 ± 0.88 %, 
47.4 ± 0.78 %, 28.6 ± 0.32 % and 
14.8 ± 0.56 %, respectively 

During the application of carbon 
nanotubes (CNTs) as drug 
carrier, its toxicity is the key 
issues of their application in the 
therapeutic areas 

[207] 

Inorganic 
nanoparticle 

Mesoporous 
polymer- Bcl- 
2siRNA NPs 

For targeting of a folic 
acid receptor of breast 
cancer 

Effective inhibition of 
sequence- specific Bcl-2mRNA 
expression, high tumor cell 
apoptosis. 

More than 94% cellular internalization 
was achieved in the OMPN–PEI1@ 
siRNAFAM@PEI2 group after 4 h and 
the fluorescence intensity was much 
higher (by approximately one order of 
magnitude) compared with the 
OMPN–PEI1@siRNAFAM group. 

Compared with the group treated 
by nanoparticles without any PEI 
coating, the apoptosis rate of the 
MCF-7 breast cancer cells in the 
OMPN–PEI1@ siRNA@PEI2 
(siRNA, 100 nM) group increased 
from 13.99% to 28.7%, revealing 
the significant cell growth 
inhibition ability of siRNA and the 
positive effect of the PEI coating 
on apoptosis efficiency. As the 
siRNA dose was increased from 
100 nM to 150 nM and 200 nM, 
the apoptosis rate reached 30% 
and 38.4%. 

NA [75] 

Metal 
nanoparticle 

Lipid -conjugated 
estrogenic (ESC8) 

To find an effective 
therapy against TNBC 
combining properties of 
target specificity, 
efficient tumor killing, 
and translational 
relevance 

Effective suppression of the 
TNBC tumor and metastasis, 
ESC8 inhibited TNBC with IC50 

ranging from 1.81 to 3.33 μM, 
combined (ESC8-SLN)-cisplatin 
therapy inhibits 87% MDA-MB- 
231 tumor cell growth. 

Although the absorptive flux o ESC8 
across formulations did not vary 
significantly, the efflux ratio was shifted 
to favor increased drug retention in the 
basolateral compartment (percent efflux 
ratio, i.e. % ER) of ESC8 was reduced 
2–3 times in ESC8-Liposomes (% ER, 
42%), ESC8-SLN (% ER, 31%), and 
ESC8-NLC (% ER, 33%) compared to 
ESC8 solution (% ER, 89%) 

The difference in tumor volume 
between ESC8-SLN (10 mg/kg/ 
day) and Cisplatin (2 mg/kg, 2x/ 
week) was significant (P <
0.0001). And the decrease in 
tumor volume in ESC8-SLN (10 
mg/kg/day) and ESC8-SLN (10 
mg/kg/day) + Cisplatin (2 mg/kg, 
2x/week, IP injection) group was 
significant (P = 0.0002). Overall, 
rank in tumor growth inhibition 
followed the order ESC8-SLN (10 
mg/kg/day) + Cisplatin (2 mg/kg, 

NA [438] 

(continued on next page) 
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Table 1 (continued ) 

Nano-carrier Products Research Aims Key Findings Targeting efficacy Anti-tumor efficacy Problems Ref. 

2x/week, IP injection) ≫ ESC8- 
SLN (10 mg/kg/day) and ESC8- 
SLN (20 mg/kg/day) ≫>≫ 
Cisplatin (2 mg/kg, 2x/week) 
>>> controls. 

Metal 
nanoparticle 

Paclitaxel/cisplatin- 
ZnO NPs 

To clarify antitumor 
activity of photo- 
stimulated ZnO- 
paclitaxel/cisplatin NPs 

Reduced toxicity and improved 
efficacy in killing breast cancer 
cells. 

NA There was a significant cell killing 
effect in all three HNSCC cell lines 
following 15 min of UVA-1 
irradiation with 0.2 ug/ml ZnO- 
NP. The IC50 of single 
photocatalytic therapy with ZnO- 
NPs was 1.2 lg/ml in HLaC 78, 1.6 
lg/ml in Cal-27, and 1.5 lg/ml in 
PJ 41. 

Besides NP-concentration, 
shape, configuration, dispersion 
grade, and surface charge seem 
to play an important role in NP- 
cytotoxicity. Further studies on 
ZnO-NP induced photocata- lytic 
cell death in cancer cells should 
address the impact of these 
values on tumor killing 
efficiency. 

[162] 

Metal 
nanoparticle 

cRGD conjugated 
Fe2O3 NPs 

To find a novel MRI 
contrast agent for bone 
metastasis imaging 

Anti-(HER-2) antibody grafted 
(Fe2O3)-polymersomes serve as 
MRI contrast agents for bone 
metastasis imaging, enhanced 
tumor retention. 

MRI signal analysis of the tumor tissue 
showed that naked polymersomes were 
less retained than the targeted ones ( 
Fig. 2E). Additionally, superior contrast 
was observed in the tumor bone, when 
compared with the contralateral femur 
tissue (Fig. 2C, D), attesting the 
targeting specificity in a clinically 
relevant in vivo scenario. 

NA NA [439] 

Metal 
nanoparticle 

Anti-neu MAb- 
SPIONs 

To find a novel biomarker 
to diagnose small volume 
metastasis early 

Anti-neu MAb-SPIONs can tag 
both primary and metastatic 
breast tumors in liver, lung, 
and bone marrow; SPIONs 
serve as MRI contrast agent. 

NA NA NA [440] 

Lipid nanocarrier LPT-HA-NCs To expand therapeutic 
horizon of Lapatinib 
(LPT) 

LPT-HA-NCs upregulate 
expression of pro-apoptotic 
proteins, Fas, caspase-3 and 
caspase-8, suppress tumor 
growth and prolong lifespan. 

The accumulation of both types of NCs 
was nearly similar at 1 h, but they could 
not be retained for a time. On the other 
hand, LPT-HA-NCs were retained in 
tumor area and the distribution was 
highest at 24 h. Mice treated with LPT- 
HA-NCs have very high tumoral 
distribution than LPT-NCs. The lungs of 
the mice treated with both types of NCs 
also showed very high localization of 
LPT. The comparative accumulation of 
LPT-HA-NCs in liver, spleen, and 
kidneys was slightly lesser than LPT-NCs 
as observed by the lower fluorescent 
intensity. 

LPT-HA-NCs displayed nearly 52, 
74.65 and 83.32 percentage 
reduction in tumor burden than 
LPT-NCs, free LPT and control 
groups respectively. Compared to 
the control group (11.33 ± 2.88 
nodules/lung) as 100% lung 
metastasis, there was only 3% 
lung metastasis in crude LPT (0.33 
± 0.57 nodules/lung), 0% in LPT- 
NCs and LPT-HA-NCs as the lungs 
of these groups denoted complete 
absence of the nodules. 

Though LPT has an acceptable 
safety the serious liver toxicity is 
reported with its treatment, but 
the exact underlying cause 
remains underdetermined. 

[184] 

Lipid nanocarrier γ- PGA-g-PLGA-IG- 
DOX NPs 

To overcome low 
therapeutic efficacy of 
chemotherapy against 
multidrug resistance 
(MDR) breast cancer 

Effective accumulation in MDR 
cancer cells, inhibition of p-gp 
activity, suppression of 
proliferation and growth of 
MDR cancer cells/ tumors, 

Significant accumulation of DOX in cell 
nuclei was observed for MCF-7 cells 
treated with free DOX-HC1 and DI-NPs. 
By contrast, the DOX signal in MCF-7 
cells treated with DOX base was 
relatively low. both free DOX-HCl and 

Upon laser irradiation, the tumor 
volume of the group treated with 
CP2k-DI-NPs was further reduced 
to 124.4 ± 22.1 mm3, attesting to 
the efficacy of the proposed 
combination therapy against MDR 

NA [441] 

(continued on next page) 
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Table 1 (continued ) 

Nano-carrier Products Research Aims Key Findings Targeting efficacy Anti-tumor efficacy Problems Ref. 

DOX base barely accumulated within 
the nuclei of the MDR cellsAlthough the 
DOX species was found in the cytoplasm 
of MCF-7/MDR cells treated with bare 
DI-NPs, it was not observed in the 
nuclei. By contrast, DOX was found in 
both cytoplasm and nuclei of MCF-7/ 
MDR cells treated with CP-DI-NPs 

cancer cells. In contrast with that 
of the groups treated with free 
drug and bare DI-NPs with laser, 
the H&E stained tumor sections of 
the group treated with CP2k-DI- 
NPs and laser irradiation 
exhibited significant reduction in 
the number of nuclei with 
enlarged apoptosis region 

Lipid nanocarrier Polymer-lipid 
hybrid NP of 
spsoralen (PSO- 
PLNs) 

To improve the water 
solubility & 
bioavailability of 
spsoralen 

In vivo anticancer efficiency of 
PSO-PLNs was done on MCF-7 
breast tumor model with low 
toxicity and side effect. 

PSO-PLNs accumulate passively in the 
tumor via the enhanced permeability 
and retention (EPR) effect due to the 
leaky tumor blood vessels, leading to 
increased exposure of PSO within the 
tumor as compared to free drug 
treatment. In addition, PSO-PLNs enable 
PSO retention within nanocarriers and 
extend the circulation time of PSO. 

When the nude mice were treated 
with PSO-PLNs, the tumor 
inhibition rate was up to 78.10%, 
which was significantly different 
from the control group (p < 0.05). 
PSO-PLNs showed more efficient 
anti-tumor effects than the 
formulations of free PSO and DOX. 

NA [442] 

Lipid nanocarrier Transferrin (Tf)- 
polymer-DOX NPs 

To improve Dox delivery 
to DOX-resistant (R) 
breast cancer cell lines 

Effective accumulation in DOX- 
resistant cancer cell line MDA- 
MB-231(R), effective inhibition 
of cancer cell proliferation 

The fluorescence intensity of cyanine 
5.5 loaded targeted NPs was 
significantly higher than that of non- 
targeted NPs and there was minimal ex 
vivo distribution in the organs examined 
(heart, liver, spleen, kidney, and lungs) 
in the targeted NP treatment group. 

The MTT assay proved that the 
cytotoxic effect of Dox/ 
F127&P123-Tf was higher than 
that of free Dox in not only the 
Dox-sensitive (OVCAR-3 and 
MDA-MB-231), but also the Dox- 
resistant MDA-MB-231(R) cell 
lines. 

NA [443] 

Liposomal 
nanoparticle 

(Cys-Asp-Gly-Phe 
(3,5-DiF)-Gly-Hyp- 
Asn-Cys)-liposome 
(DOX -rapamycin) 

To find a new approach to 
combat the triple- 
negative breast cancer 
(TNBC) 

Enhanced antitumor activity 
and efficacy in TNBC xenograft 
mice model 

As shown in Fig. 6A, the mice receiving 
LXY-LS-DIR displayed a significantly 
stronger intense fluorescence compared 
with that of LS-DIR in all time points in 
tumor tissues. The fluorescence 
distributing all over the bodies of the 
mice receiving LXY-LS was weaker than 
that of mice receiving LS. 

The relative tumor volumes of 
control, free DOX, LS-DOX and 
LXY-LS-DOX were 6.68 ± 2.21, 
4.12 ± 0.78, 3.61 ± 0.65 and 2.42 
± 0.79, respectively. The 
significant reduced tumor weight 
also demonstrated the superior 
inhibition efficacy of LXY- 
modified liposomes towards LS- 
DOX (P = 0.026) 

HIF-1a down-regulation might 
be partly account for the anti- 
tumor effect of RAPA alone but 
might not completely explain 
the enhanced anti-tumor 
efficacy of LXY-LS- DOX plus 
M− RAPA combinational 
treatment compared with M- 
RAPA single treatment. 

[444] 

Liposomal 
nanoparticle 

Micelle-DOX To define the maximum- 
tolerated dose (MTD) and 
dose-limiting toxicities 
(DLTs) of NK911 

Neutropenia was the 
predominant haematological 
toxicity, dose-limiting 
toxicities (DLTs) = 67 mg m− 2, 
NK911 was well tolerated, 
recommended phase II dose =
50 mg m− 2 per 3 wks 

NA A partial response was seen in one 
patient with metastatic pancreatic 
cancer who had been treated at a 
dosage level of 6; the size of the 
liver metastasis had decreased by 
more than 50%, compared to the 
baseline scan, in this patient. The 
tumour marker (CA19-9 and CEA) 
levels in this patient had also 
decreased remarkably. 

The value of V1 in humans after 
the injection of free DXR has not 
been reported 

[445] 

Liposomal 
nanoparticle 

PAA-g-PEG- 
copolymer micelles- 
DOX 

To delay 4 T1 tumor 
growth and reduce the 
lung metastases of breast 
cancer 

Effective inhibition of growth 
of 4 T1 breast cancer cells in 
vitro, improved DOX 
bioavailability and reduced 

In the process of injected by via tail vein 
in 4 h, more tumor accumulation and 
less heart distribution of DOX- 

DOX HCl and PAA(8:2)- 
PEG2000/PAA(8:2)-PEG5000 
DOX-incorporated micelles 
exhibited effective inhibitory 

For DOX HCl treated group, 
obvious organ damage as 
fragmentation and pathological 
changes were perceived in heart 

[446] 

(continued on next page) 
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Table 1 (continued ) 

Nano-carrier Products Research Aims Key Findings Targeting efficacy Anti-tumor efficacy Problems Ref. 

side effects to heart and other 
organs 

incorporated micelles compared to that 
of DOX HCl 

effect compared to the control 
groups (PBS and empty micelles), 
and the inhibitory effect was 
reflected in a statistically 
significant reduction in tumor 
volume at day 23 compared with 
control groups. 

and spleen tis- sues compared 
with the normal muscle fibers 
and organ structure from blank 
mice. 

Liposomal 
nanoparticle 

Liposomes- 
paclitaxel- 
irinotecan 
(EndoTAG-1 and 
MM-398) 

To evaluate safety and 
efficacy in advanced 
TNBC 

Combination of EndoTAG-1 
and standard paclitaxel showed 
good antitumor efficacy to 
advanced TNBC. 

NA The PFS rate at week 16 was 
59.1% on combination treatment, 
34.2% on EndoTAG-1, and 48.0% 
on paclitaxel. Median PFS reached 
4.2, 3.4, and 3.7 months, 
respectively. After complete 
treatment (week 41 analysis), 
median overall survival (OS) was 
13.0, 11.9, and 13.1 months for 
the modified Intention-to-Treat 
(ITT) population and 15.1, 12.5, 
and 8.9 months for the per- 
protocol population, respectively. 
The clinical benefit rate was 53%, 
31%, and 36% for the treatment 
groups. 

A randomized controlled phase 
III study is mandatory to confirm 
this therapeutic concept. 

[50] 

Liposomal 
nanoparticle 

CREKA-liposome- 
DOX (CREKA-Lipo- 
Dox) 

For the therapy of 
metastatic breast tumor 

Targeting at fibronectin, longer 
blood circulation time, and 
better antitumor and anti- 
metastasis efficacies. 

The CREKA-Lipo-Dox increased almost 
4-fold uptake amount of Dox compared 
to the PEG-Lipo-Dox group, and the 
distribution was well co-located with 
the fibronectin both in tumor vessels 
and deeper tumor sites. 

When the treatment procedure 
ended, the average tumor volume 
of the PEG-Lipo-Dox and the 
CREKA-Lipo-Dox groups 
respectively decreased to 150 
mm3 and 60 mm3. The mice 
treated with the CREKA-Lipo-Dox 
showed less lung metastasis 
nodules than other groups. 

NA [66] 

Liposomal 
nanoparticle 

Losartan loaded 
liposomes (LST-Lip) 

For improvement of 
liposomal paclitaxel 

LST-Lip in advance could 
inhibit the collagen in tumors 
effectively and did not affect 
the blood pressure, then PTX- 
TH-Lip could exert enhanced 
antitumor efficacy. 

The amount of Evans Blue in tumor in 
LST-Lip group was 1.98 times of that in 
control group. 

Tumor volume reduces 41.73% by 
TH-Lip (PTX-TH-Lip), and 14.94% 
by PTX-TH-Lip 

NA [74] 

Solid lipid 
nanocarrier 

diallyl disulfide- 
solid lipid NPs 
(DADS-SLN) 

Targeting at RAGE 
receptor for improvement 
of apoptotic activity in 
TNBC 

RAGE antibody-DADS-SLN 
shows good cytotoxicity 
against RAGE overexpressing 
MDA-MB231 cells, RAGE is a 
promising molecular target in 
TNBC. 

The cellular uptake of DADS-RAGE-SLN 
is much higher than that of DADS SLN in 
MDA-MB231 cells (P < 0.05). 

The percentage of apoptotic cells 
was higher in DADS-RAGE-SLN 
(61.8%) when compared to DADS- 
SLN (45%) and DADS (15%). 

This study is a preliminary 
report of in vitro results, further 
RAGE-targeted delivery to 
improve antitumour activity 
need to confirm in vivo in 
animal models. 

[72] 

Solid lipid 
nanocarrier 

Paclitaxel amino 
lipid-P53 mRNA NPs 

To find a combination 
therapy for the targeting 
of TNBC 

Higher drug loading efficiency 
than Abraxane® and Lipusu®, 
good inhibition of orthotopic 
TNBC cancer cell growth. due 
to its small size. 

NA PAL P53 mRNA NPs showed 
significantly stronger inhibition of 
tumor growth in comparison to 
other groups. Specifically, one 
mouse in PAL P53 mRNA NPs 
group (mouse 779) showed 

NA [447] 

(continued on next page) 
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Table 1 (continued ) 

Nano-carrier Products Research Aims Key Findings Targeting efficacy Anti-tumor efficacy Problems Ref. 

complete tumor elimination after 
treatments. 

Solid lipid 
nanocarrier 

lipid-polymer 
excipients- 
docetaxel (LPHNPs- 
DTX) 

For controlled and 
sustained delivery of DTX 

Good cytotoxicity & high 
cellular penetration of 
docetaxel in breast cancer cell 
lines, improved 
pharmacokinetics & target 
specificity 

After administration of single dose of 
LPHNPs DTX, a significant amount (p <
0.001) of DTX was detected in tumor of 
animals in comparison to free DTX after 
24 h. 

The residual tumor burden was 
calculated as 69.85%, 31.9% & 
138.6% for free DTX, LPHNPs- 
DTX and normal saline (Untreated 
control) after 3 weeks of treatment 
respectively. The repeated dosing 
of LPHNPs-DTX showed less 
mortality (33.33%) than mortality 
seen with free DTX treatment. 

NA [37] 

Solid lipid 
nanocarrier 

Tamoxifen (Tam) 
loaded solid lipid 
nanoparticles (SLNs) 

To investigate its effect on 
MCF7 Tam-resistant 
breast cancer cells 
(MCF7-TamR) 

Tamoxifen-loaded solid lipid 
nanoparticles are a potential 
treatment against resistant 
breast cancer cells. 

NA exposure of R ↔ and R ↔ cells to 
Tam-SLNs for 72 h, led to, cell 
shrinkage, loss of cellular 
adhesion, membrane blebbing, 
small holes, rounding and highly 
condensed or fragmented 
chromatin, which is indicative of 
apoptosis, as the dose of Tam-SLNs 
was increased. 

NA [65] 

Polymeric micelle Cholecalciferol-PEG 
nano micelle- 
doxorubicin 
(PEGCCF-DOX) 

Find a novel approach for 
treatment of TNBC 

Significant reduction in tumor 
markers including mTOR, c- 
Myc & Bcl-xl, upregulated 
preapoptotic marker Bax, 
enhanced chemotherapy, & 
apoptosis 

Cellular accumulation studies confirmed 
that PEGCCF was able to concentration- 
dependently enhance the cellular 
accumulation of DOX and rhodamine 
123 in MDA-MB-231 cells through its P- 
glycoprotein (P-gp) inhibition activity. 

PEGCCF-DOX exhibited 1.8-, 1.5-, 
and 2.9-fold enhancement in 
cytotoxicity of DOX in MDA-MB- 
231, MDA-MB-468, and MDA-MB- 
231DR (DOX-resistant) cell lines, 
respectively. PEGCCF causes 
enhanced chemosensitization and 
induces apoptosis. Substantially 
enhanced apoptotic activity of 
DOX (10-fold) in MDA-MB-231 
(DR) cells confirmed apoptotic 
potential of PEGCCF. 

NA [67] 

Polymeric micelle Folate- 
PF127-F68 co- 
micelle-Chrysin 

For enhancement of oral 
bioavailability and 
anticancer activity 
against human breast 
cancer cells 

Target at overexpressed folate 
receptors on MCF-7 cancer 
cells, significant higher Cmax, 
AUC0-t, enhanced anticancer 
activity 

Significant increase in Cmax (2-fold) 
and AUC0-infinity (3-fold) for CH-MM 
when compared to A-CH suggested 
significant improvement in oral 
bioavailability of CH. 

CH-MM showed 5-fold reduction 
in GI50 value of CH when tested in 
MCF-7 cells reducing GI50 value 
of CH significantly. 

NA [77] 

Polymeric micelle β-CD polymer 
(β-CDP) conjugated 
RNA-cleaving DZ 

To find a good way to 
deliver RNA-cleaving DZ, 
and suppression of the c- 
Myc gene in MCF-7 cell 
line 

The formulation inhibited the 
growth of SMC cells and MCF-7 
cell line. 

Results of Real-time-qPCR showed 1.7- 
fold decrease the expression of c-Myc 
mRNA after cell transfection of 0.8 μM 
inclusion complex. 

The formulation inhibited the 
30–80% growth of SMC cells and 
MCF-7 cell line. By flow cytometry 
analysis, apoptosis rate of cancer 
cells was high (45.6%), with a 
significant difference compared to 
control. 

NA [64] 

Polymeric micelle A micellar system 
using styrene-co- 
maleic acid (SMA) 

To deliver hydrophobic 
RL71 curcumin, and to 
improve pharmacokinetic 
profile for TNBC 
treatment 

Higher toxicity to cancer cells NA SMA-RL71 micelles have a 
cytotoxicity profile comparable to 
the free drug against several TNBC 
cell lines. Moreover, the 15% 
loaded micelles increased the 
stability of RL71 and 

NA [48] 

(continued on next page) 

X. Kong et al.                                                                                                                                                                                                           



ProgressinMaterialsScience134(2023)101070

8

Table 1 (continued ) 

Nano-carrier Products Research Aims Key Findings Targeting efficacy Anti-tumor efficacy Problems Ref. 

demonstrated higher activity in a 
tumor spheroid model. 

Polymeric micelle Transferrin-TPGS 
micelle 

To co-delivery docetaxel 
(drug) and Au NC 
(imaging) for detection 
and treatment of MDA- 
MB-231-Luc breast cancer 

Great advantages for real-time 
tumor imaging and inhibition 
of tumor growth with 71.73- 
fold more effective than 
Taxotere (®) for MDA-MB-231- 
luc cancers 

The IC50 values demonstrated that the 
non-targeted and targeted micelles 
could be 15.31 and 71.73 folds more 
effective than Taxotere after 24 h 
treatment with the MDA-MB-231-luc 
cells. 

The tumor size of the saline 
control, the AuNC control, 
Taxotere®, the non-targeted 
(DTX-AuM) and targeted (DTX- 
AuTfM) theranostic micelles were 
373 ± 40.4 mm3, 396 ± 40.1 
mm3, 288 ± 32.5 mm3, 180 ±
18.8 mm3 and 86 ± 15.7 mm3, 
respectively. 

NA [55] 

Polymeric 
nanoparticle 

Controlled-drug 
release NP Gle-Ile- 
Arg Leu-Arg-Gly 
(GIRLRG) 

To capitalize on the 
response of tumor cells to 
XRT 

Delayed in vivo tumor tripling 
time by 55 days in MDA-MB- 
231 and 12 days in GL261, 
increasing apoptosis and tumor 
growth delay 

Paclitaxel was found in significantly 
greater concentrations in the targeted- 
nanoparticle group with the use of 
irradiation over all other treatment 
groups at one and three weeks (P <
0.05) 

MDA-MB-231 tumor tripling time 
was delayed 55 days with the 
nanoparticle-targeted peptide 
with XRT (P = 0.0001), compared 
to 11–14 days by the three other 
XRT-treatment groups (P < 0.05). 

NA [39] 

Polymeric 
nanoparticle 

RGD-solid lipid NP 
(RGD-SLN) 

To inhibit αvβ3 integrin 
receptor overexpressing 
tumor cell metastasis 

It was shown to inhibit 
adhesion and invasion of αvβ-3 
integrin receptor over- 
expressed in invasive TNBC 
tumors. 

In vivo whole-body fluorescence 
imaging revealed that 1 % cRGD on the 
SLNs’ surface had maximum tumor 
accumulation with extended tumor 
retention among all formulations tested 
in an orthotopic MDA-MB-231/EGFP 
breast tumor model. 

RGD-SLNs were demonstrated to 
inhibit MDA-MB-231 cell 
adhesion to fibronectin and 
invasion through Matrigel. 

NA [56] 

Polymeric 
nanoparticle 

RGD-polymer lipid- 
DOX/mitomycin C 
(RGD-DOX-MMC- 
PLN) 

To develop a dual- 
targeted nanomedicine 
for treatment of lung 
metastases of TNBC 

Enhanced cytotoxicity and 
overall efficacy 

At a concentration of 50 mg/ml anti- 
HER2-modified nanoparticles up-to 
85% of the cells showedassociation with 
nanoparticles. 

Compared to non-targeted 
DMPLN or free drugs, 
administration of RGD-DMPLN 
(10 mg/kg, iv) resulted in a 4.7- 
fold and 31-fold reduction in the 
burden of lung metastases 
measured by bioluminescence 
imaging, a 2.4-fold and 4.0-fold 
reduction in the lung metastasis 
area index, and a 35% and 57% 
longer median survival time, 
respectively. 

NA [61] 

Polymeric 
nanoparticle 

Chitosan (CS)/ 
polylactide (PLA) 
NPs of tamoxifen 

To deliver tamoxifen to 
treat TNBC 

High encapsulation, sustained 
released and significant cell 
death in breast cancer cell. 

NA NA NA [36] 

Polymeric 
nanoparticle 

AXT050-poly (lactic- 
co-glycolic acid)- 
poly ethyleneglycol 
(AXT050- PLGA- 
PEG) 

To evaluate in vivo in 
mouse model of an 
orthotopic human xeno 
graft triple-negative 
breast cancer (MDA-MB- 
231) 

Good targeting at integrin avb3 
breast cancer cell receptor. 

Using labeled AXT050 peptide, the 
fluorescence signal in the tumor for 10% 
PLGA-PEG-AXT050 (90% PEG-PLGA) 
NP at 24 h post injection was 14% of the 
total fluorescence measured in all 
harvested organs, a 2.2-fold increase 
compared to non-targeted 0% PLGA- 
PEG-AXT050 (100% PEG-PLGA) NP and 
a 3.5-fold increase from 100% PLGA- 
PEG-AXT050 in this head-to-head study. 

In MDA-MB-231 cells, 50–100% 
PLGA-PEG-AXT050 NPs 
encapsulating 1% AXT050 
reduced human cancer cell 
adhesion by 80–81%. 

Binding affinity to integrin αvβ3 
needs to be improved. 

[448] 

NA [69] 

(continued on next page) 
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Table 1 (continued ) 

Nano-carrier Products Research Aims Key Findings Targeting efficacy Anti-tumor efficacy Problems Ref. 

Polymeric 
nanoparticle 

Calcitriol-loaded 
polymeric 
nanoparticles 

To reduce doses and/or 
frequency, while 
retaining the therapeutic 
activity towards cancer 
cells 

The nanocapsules showed the 
sustained release of calcitriol 
with significant accumulation 
of calcitriol in the tumor cell. 

The amount of IV-administered MNPs 
delivered to the tumors was enough in 
combination with the field strength to 
effectively ablate nearly all tumors 
(78%–90%, results of two independent 
experiments). 

Successfully treated tumors were 
rapidly liquefied and resorbed in 
1–2 days. 

DNA  
nano 
structures 

DNA- glutathione- 
Au NCs- 
actinomycin (DPAu/ 
AMD) 

For simultaneous 
detection and killing of E. 
coli and Staphylococcus 
aureus 

Challenging to escape the 
endosome degradation of DNA 
nanostructure in mammalian 
TNBC. 

NA NA NA [52] 

DNA nano 
structures 

Cetuximab -TH 
(THC3)- doxorubicin 
(DOX) drug 
(THDC3) 

For biosensing and 
antibody-mediated 
targeted drug delivery 

Preferential killing of MDA- 
MB-468 cancer cells; 
cetuximab targets at EGFR over 
expressing cancer cells; 
enhanced targeting & killing of 
TNBC cancer cells 

MDA-MB-468 cells were observed to 
take up 2.5-fold more of Cy3-THC3 
compared to Cy3-TH. 20%, 28%, 34%, 
and 47% of total cell population that 
was detected to take in Cy3-TH, Cy3- 
THC1, Cy3-THC2, and Cy3-THC3, 
respectively. 

NA NA [449] 

Dendrimers for 
siRNA 
delivery 

Oligo- (AODNs) 
-poly(amidoamine) 
dendrimers 
G4PAMAM 

To demonstrate reduction 
in tumor vascularization 
in TNBC xenograft mouse 
model 

Used as a gene vector to deliver 
AODNs into MDA-MB-231 
breast cancer cells with 
enhanced cellular uptake; high 
inhibition efficiency of tumor 
vascularization; protecting 
DNA from enzyme digestion 

Compared to VEGFASODN group, 
G4PAMAM complex seem to be more 
efficient in delivering nucleic acid 
fragments (P < 0.05). 

The tumor growth was not 
suppressed obviously until 4 
weeks later (P < 0.05), and G4/ 
VEGFASODN complex was 
superior to VEGF-ASODN only (P 
< 0.05). 

If the DNA/RNA-PAMAM 
complex is hard to dissociate in 
target environment, it can 
weaken the motive effect of 
target DNA/RNA. 

[40] 

Dendrimers for 
siRNA 
delivery 

PAMAM-siRNA 
complexes 

To identify new 
therapeutic targets and 
develop novel treatments 
to improve patient 
outcomes 

SUM1315 TNBC cells 
efficiently take up PAMAM- 
siRNA complexes, leading to 
significant knockdown of 
TWIST1 and EMT-related 
target genes; a valuable 
adjunctive therapy for TNBC 
patients 

Cellular uptake of AlexaFluor 647- 
labeled siQ (acting as a surrogate for 
unlabeled siTwistA and siTwistB) was 
greater than 90% after 24 h 

NA NA [54] 

Dendrimers for 
siRNA 
delivery 

G4PAMAM 
-GdDOTA- DL680 

For imaging and drug 
delivery of TNBC 

Effective drug uptake by and 
imaging of TNBC tumor using 
(GdDOTA) 42 G4PAMAM- 
DL680 dendrimeric 
nanocarrier. 

NA NA NA [60]  
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shown in Fig. 1. 

2.1. Major types of nanoparticles involved in treating TNBC 

2.1.1. Polymeric nanoparticles (PNPs) 
PNPs are one of the most recognized nanoparticles widely adopted as a nano drug delivery system, and are the simplest soft 

materials among nanomedicines [89-92]. Anti-cancer reagents could be encapsulated in the inferior or conjugated on the surface of 
PNPs, which could deliver and release a required dose of anti-cancer reagents to tumor sites for a long period of time. For example, a 
Bortezomib (BTZ)-loaded poly (ethylene glycol)-b-(poly lactic acid) (PEG-b-PLA) nanoparticle can deliver poorly water-soluble BTZ to 
BCSCs and non-CSCs, and exert inhibition of proliferation and initiation of apoptosis. As compared to administration of free BTZ, 
delivery via nanoparticles could contribute to enhanced uptake and accumulation of BTZ in adherent cells and balloon cells, prolong 
the cycle half-life of BTZ, and improve drug accumulation in tumor tissues. Subsequently, researchers further encapsulated doxoru-
bicin (DOX) and all-trans retinoic acid (ATRA) in the same PEG-b-PLA nanoparticles. Experimental results indicated that as compared 
to administration of free drugs alone, the encapsulated ATRA and DOX in nanocarriers had slower in vitro release rates. Besides, the co- 
delivery of multi-drugs could better inhibit tumor growth in both in vitro and in vivo experiments as compared to a single-drug 
nanocarrier system [93]. Such dual drugs-loaded nanoparticles possess advantages, such as prolonged blood circulation time, 
improved pharmacokinetics, and enhanced tumor uptake and anti-tumor effects [94,95]. In another study, Chittasupho et al. loaded 
the antagonist LFC131 of CXCR4 into PLGA nanoparticles, and embedded DOX to obtain a composite nano drug LFC131-DOX-NPS 
[96]. Their results showed that the composite LFC131-DOX-NPS could significantly inhibit the proliferation, promote apoptosis of 
breast cancer cells, and retard the effect of SDF-1A on promotion of metastasis of breast cancer cells [97]. 

2.1.2. Liposomes and micelles 
Liposomes are colloidal nanocarriers composed of amphiphilic phospholipid bilayers, which could load with both hydrophilic and 

hydrophobic drugs. Liposomes have good biocompatibility, are easy to have surface-modification, and have long circulation time in 
blood, which is an ideal nano carrier for anti-BCSCs treatment [98-101]. Onivyde® is an irinotecan nano-liposome approved by the 
FDA of USA in 2015, not a common drug for breast cancer. However, the disease control rate of Onivyde® was reported to be 45.5% in 
a phase I study of advanced refractory solid tumors including breast cancer [102]. Conjugated hyaluronic acid-Gemcitabine (GEM)- 
loaded liposomes were used to target at the CD44 + proteins which are expressed on BCSCs. Experimental results showed that the 
hyaluronic acid-Gemcitabine (GEM)-loaded liposomes could enhance the anti-tumor cytotoxicity, anti-migration and anti-colony 
forming abilities of GEM. The liposome nanocarrier could also improve the stability of GEM in blood, and significantly reduce the 
systemic toxicity of GEM to normal healthy cells via targeted delivery of GEM to tumor sites [103]. 

Polymeric micelles are derived from self-assembled amphiphilic block copolymers, which contain both hydrophilic and hydro-
phobic components, providing functionalities for surface modification to introduce tumor targeting ability. Polymeric micelles are 
popular drug nanocarriers for anti-cancer treatment due to their uniformity, small sizes and prolonged blood circulation time 
[104,105]. In previous studies, PTX-loaded and anti-CD44 + antibody functionalized PLGA-co-PEG polymeric micelles were used to 
treat breast cancer. Experimental results showed that the encapsulation of PTX into PLGA-co-PEG micelles could enhance its cyto-
toxicity towards BCSCs as compared to administration of free PTX without nanocarriers [106,107]. 

Moreover, belonging to the self-assembled micellar nanoarchitecture of heavy-atom-modulated supramolecules, the multi- 
iodinated boron dipyrromethene micelles with tunable photoconversion and efficient cytoplasmic translocation were used for 
potent suppression against TNBC. Specifically, Tetra-iodinated boron dipyrromethene micelles (4-IBMs) showed an enhanced anti-
tumor efficiency by inducing over-expression considerable apoptotic proteins, and potently suppressed orthotopic and subcutaneous 
TNBC models. Comparing to surgical resection and chemotherapy, 4-IBMs showed better efficacy of inhibiting metastasis and 
recurrence by inducing death of immunogenic cell, production of metastasis-relevant proteins, and facilitating the transformation from 
anti-inflammatory M2 macrophages to tumoricidal M1 phenotype [108]. 

2.1.3. Metal oxide nanoparticles in TNBC targeted therapy 
Among various metal oxides NPs, iron oxide NPs (IONPs) have greatly attracted scientists’ attention because of their unique 

characters, such as superparamagnetic (SPM) property (SPM IONPs or SPIONs), low toxicity, large surface area, biocompatibility, easy 
bonding to many natural biomolecules via their grafted ligands, etc [109-115]. Among various iron oxide nanomaterials, magnetite 
and maghemite are the top two of the most promising and popular nanomaterials for biomedical applications [116,117]. Currently, 
main topic of important progresses has been relying on such nanomagnets with adjustable architecture since modular designs make it 
possible for SPIONs to exhibit multi-functions simultaneously, such as delivery of anti-cancer drugs with real-time monitoring and 
imaging ability. Thanks to the combination of nanometer scale with magnetism properties, magnetic NPs have potential to serve as an 
attractive material for biomedical applications [118,119]. Based on their small controllable size and shape, magnetic NPs are com-
parable to biological entities as well as to easily interact with those entities [120]. Without a doubt, the sizes of magnetic NPs can be 

Fig. 1. Targeted drug delivery system, including liposomes, micelles, dendrimers, polymeric NP and DNA nanostructures, could be used to deliver 
different chemodrugs like paclitaxel, doxorubicin and docetaxel, in addition to tracking dye Cy3, as in DNA nanostructure for targeted delivery 
using the target-specific ligand Cetuxima. Modified and reprinted from ref. [88]. Copyright © The Author(s). 2019. Reproduction with permission 
from The Author(s). 2019 Open Access. 
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prepared to be close to those of proteins (5–50 nm), cells (10–100 μm), and viruses (20–450 nm), depending on different ways of 
preparations [121]. 

Although magnetic NPs seem to be very useful for many in vivo applications, they still suffer from two primary drawbacks: removal 
by macrophages and an uneven bio-distribution. To resolve these two shortcomings, researchers have devoted efforts on the design and 
surface-functionalization of magnetic NP to render them stable and stealthy (or non-interaction) in physiological media. According to 
some previous studies, magnetic NPs can be surface-functionalized with a plenty of functional moieties, including some biocompatible 
molecules like hydrophilic molecules, silica layers, polymers, and so on [122]. Schematic representation of coating of corona or ligand 
layers on iron oxide nanocrystals was shown in Fig. 2. 

A lot of scientific efforts were dedicated to the surface-modification of magnetic NPs aiming for improvement of targeted thera-
nostic efficacies. Various tumor cell-specific ligands were used to decorate the magnetic nanoparticles; for example, anti-human 
epidermal growth factor receptor-2 (a single-chain antibody fragments) was used for targeting at breast cancer cells [123], hepato-
cellular carcinoma [124], and squamous cell carcinoma [125,126]. Therefore, syntheses of SPIONs and adjustments of their chemical 
and physical characters have been achieved, which paves a novel way for a safer and more efficient use in treating various cancers. 

Moreover, by enclosing manganese-protoporphyrin (MnP) into folate-liposomes, a multifunctional nanosonosensitizer system (FA- 
MnPs) was designed. Facilitated by depth-responsed sonodynamic therapy, FA-MnPs exhibited promising anti-tumor efficacy in both 
superficial and deep tumors in the TNBC mice model, and it also induced the anti-tumor immune by re-polarizing M2 to M1 mac-
rophages, and elicit immunogenic cell death [127,128]. Additionally, composed of hyaluronic acid (HA) / copper ion (Cu (II))-chelated 
dextran-aldehyde (DA)-quercetin (Q), the CuQDA/IO@HA exhibited specific cytotoxicity by precisely targeting BRCA-mutant TNBC 

Fig. 2. Coating corona or ligand layers on iron oxide nanoparticles. (Top): Schematic representation of the main strategies used to modify the 
surface of iron oxide NPs (SPIONs). (Bottom): Schematic representation of complex structure based on the SPIONs surface functionalization, 
including drug loading. Modified and reprinted from ref. [135]. Reproduction with permission from 2018 by the authors. Licensee MDPI, 
open access. 
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Table 2 
Ligands of nano drug delivery systems for targeted TNBC therapy.  

Ligands Biochemical essence Characteristics Key findings Targeting efficacy Anti-Tumor efficacy Problems Ref. 

Aptamers Short 
oligonucleotides 
stretch of single- 
stranded DNA/RNA 

It can specifically bind the 
target molecule with high 
affinity and strength. 

1) A newly identified LXL-1 
aptamer can specifically target 
at surface membrane proteins on 
TNBC tumor. 

LXL-1-A was highly specific to 
the corresponding tumor tissue 
and displayed 76% detection 
rate against breast cancer 
tissue with metastasis in 
regional lymph nodes. 

NA NA [450] 

2) A platelet derived growth 
factor (PDGF) receptor was 
found to over-express in TNBC 
cell line. MCF7 and MDA-MB- 
415 breast cancer cells are 
known to overexpress the 
mammaglobin A2 and 
mammaglobin B1. 

NA NA NA [451] 

3) MAMA2 and MAMB1 
aptamers could be used to detect 
metastatic breast cancer via 
using highly sensitive terahertz 
(THz) chemical microscopy 
(TCM) upon THz radiation. 

NA NA NA [452] 

Peptides Cell penetrating 
ligands as 
diagnostic/imaging 
sequences 

1) Peptides are low Mw 

ligands with abilities to 
target at intracellular 
molecules with high 
specificity. 
2) These target binding 
peptides can fuse to bacterial 
coat proteins, be expressed 
using genetic engineering, 
and screened by phage 
display library technique. 

1) CK3 peptide (Cys-Leu-Lys- 
Ala-Asp-Lys-Ala Lys-Cys) was 
found able to bind to NRP-1 
trans-membrane protein 
(neuropilin-1) by NIR 
fluorescence imaging technique. 

NA NA There are still no ideal NRP-1- 
targeting peptides for direct 
tumor molecular imaging, as the 
NRP-1-targeting peptides 
containing exposed C-end rule 
motifs were not good for tumor 
imaging because they tended to 
penetrate into the first 
encountered organs in vivo. 

[453] 

2) Activable cell-penetrating 
peptide (ACPPs) can target at 
the matrix metalloproteinase 
(MMP)-2 enzymes. Covalent 
linkage of ACPPs to cyclic-RGD 
peptide can enhance its in vivo 
uptake and contrast imaging by 
TNBC tumor tissues. 

In vivo, dual-targeted ACPP 
treatment resulted in tumor 
contrast of 7.8 ± 1.6, a 10-fold 
higher tumor fluorescence 
compared with the negative 
control peptide, and increased 
probe penetration into the core 
of MDA-MB-231 tumors. 

Treatment with cyclic-RGD-PLGC 
(Me)AG-MMAE-ACPP resulted in 
complete tumor regression in one 
quarter of MDA-MB-231 tumor- 
bearing mice, compared with no 
survival in the control groups. 

The therapy experiments do not 
have controls to validate the 
proposed mechanism and 
primarily compare animal data 
for prodrug-MMAE with mice 
that are not receiving treatment. 

[454] 

3) A pH-responsive MRI nano- 
probe, pHLIP-conjugated MRI- 
NP, can specifically target at and 
accumulate in TNBC cells in 
response to the low local pH 
inside cancer cells. 

NA NA NA [143] 

Antibodies Y-shaped protein 
with two epitopes 

It has high selectivity and 
affinity toward its receptor, 
and is the best targeting 
ligand. 

1) Anti-TF antibody labeled with 
copper-64 (anti-TF-antibo dy- 
64Cu) was used as PET imaging 
contrast agents in in-vitro TNBC 
model. 

Serial PET imaging revealed 
rapid and persistent tumor 
uptake of (64)Cu-NOTA-ALT- 
836-Fab (5.1 ± 0.5 %ID/g at 
24 h post-injection; n = 4) and 
high tumor/muscle ratio (7.0 

NA The limitation of Fab is lower 
binding avidity compared to the 
full antibody, since Fab has only 
one antigen-binding site. For 
example, the uptake in positive 
tumor (MDA-MB-231) was only 

[455] 

(continued on next page) 
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Table 2 (continued ) 

Ligands Biochemical essence Characteristics Key findings Targeting efficacy Anti-Tumor efficacy Problems Ref. 

± 1.2 at 24 h post-injection; n 
= 4), several-fold higher than 
that of the blocking group and 
tumor models that do not 
express significant level of TF, 
which was confirmed by 
biodistribution studies. 

5.1 %ID/g in this study, which is 
~ 3-fold higher than negative 
tumor (MDA-MB-435) and ~ 2.5- 
fold higher than blood. This 
might restrict the future 
application of Fabs in tumor 
imaging. If high absolute tumor 
uptake rather than high tumor 
contrast is required, Fab may not 
be very suitable. 

2) NIR fluorophore and Indium- 
111 (111In) labelled uPAR 
antibodies were used as optical 
and SPECT imaging regents, 
respectively. 

NA NA NA [456] 

3) TNBC tumor could be well 
visualized using Iodine-124 
(124I) labeled B-B4 antibody 
(targeting at syndecan-1; CD138 
antigen) and has good treatment 
response to I-131 (131I) radio- 
labelled B-B4 antibody. 

The tumor uptake of 125I-B-B4 
peaked at 14% injected dose 
(ID) per gram at 24 h and was 
higher than that of the isotype- 
matched control mAb (5% ID 
per gram at 24 h). Immuno-PET 
performed with 124I-B-B4 on 
tumor-bearing mice confirmed 
the specificity of B-B4 uptake 
and its retention within the 
tumor. 

All mice treated with RIT (n = 8) 
as a single treatment at the MTD 
experienced a partial (n = 3) or 
complete (n = 5) response, with 
three of them remaining tumor- 
free 95 days after treatment.  

(1) Low number of antigen 
copies expressed by the 
triple-negative MDA-MB- 
468 cells low number of 
antigen copies expressed 
by the triple-negative 
MDA-MB-468 cell. 

Further studies are 
needed using a residual-
izing agent such as that 
described by Goldenberg 
and co-workers or of 
radioactive metals such 
as lutetium-177 or 
yttrium-90 to increase the 
efficiency of RIT. 

[457] 

Hyaluronic- 
Paclitaxel  
nanoconjugates 

Hyaluronic acid 
(HA)-Paclitaxel 
(PTX) 

Hyaluronic acid (HA) has 
high affinity toward CD44 
receptor. An ultra-small (~5 
kDa) HA-PTX nanoconjugate 
are uptaken, via CD44 
receptor-mediated 
endocytosis, by metastatic 
breast cancer (MDA-MB- 
231Br) cells. 

1) E-selectin binding peptide 
modified micelle could assemble 
with hyaluronic acid-paclitaxel 
conjugate and exert good 
inhibition of breast cancer 
metastasis in a murine model. 

In accordance with the 
fluorescence microscopy, Esbp- 
HA-PTX/C6 micelles 
demonstrated much higher 
cellular uptake efficiency, 
about 6.1-fold more than that 
of HA-PTX/C6 micelles in TNF- 
α activated HUVEC after 
quantitative assay. In 
semiquantitative analyses, 
Esbp-HA-PTX/DiR micelles 
exhibited approximately 2.2- 
fold higher intensity at tumor 
tissue than HA-PTX/DiR 
micelles.  

(1) Esbp-HA-PTX/PTX 
micelles inhibited tumors 
most effectively 
(70.63%), followed by 
HA-PTX/PTX micelles 
(55.32%) and PTX solu-
tion (50.64%). 

For PTX solution, HA- 
PTX/PTX micelles and 
Esbp-HA-PTX/PTX mi-
celles groups, the number 
of tumor nodules in the 
lungs was reduced by 
54.3%, 56.8% and 
92.6%, respectively, 

NA [458] 

(continued on next page) 
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Table 2 (continued ) 

Ligands Biochemical essence Characteristics Key findings Targeting efficacy Anti-Tumor efficacy Problems Ref. 

compared with saline 
control. 

2) A HA-PTX-PLGA formulation 
could exert a sustained drug 
release and enhance PTX 
cytotoxicity to MDA-MB-231 
cells as compared to cells 
incubated with the non-HA 
coated nanoparticles. 

To investigate the cellular 
uptake of HA-coated and non- 
coated PLGA NPs, coumarin-6 
loaded NPs were synthesised 
and the coumarin-6 
encapsulation efficiency of 
these formulations were 
measured and were found to be 
(97.50 ± 1.98 for HA-PLGA 
NPs and 98.34 ± 0.66 for PLGA 
NPS. 

NA NA [459] 

3) A small molecular weight HA- 
paclitaxel nanoconjugate can 
improve standard 
chemotherapeutic drug efficacy 
in a preclinical model of brain 
metastases of breast cancer. 

NA The animals administered with 
HA-paclitaxel nanoconjugate had 
significantly longer overall 
survival compared with the 
control and the paclitaxel-treated 
group (P < 0.05). 

NA [460] 

Peptides-PLGA-b- 
PEG polymers 

Peptide conjugated 
onto PLGA-b-PEG 
polymers for delivery 
of antisense miRNA 

PEG-b-PLA micelles are a 
first-generation platform for 
systemic multi-delivery of 
poorly water-soluble 
anticancer agents. 

poly (lactic-co-glycolic acid)-b- 
PEG polymers conjugated with 
Urokinase plasminogen 
activator receptor (uPAR) 
targeting peptide could carry 
two antisense miRNA 
simultaneously and exert good 
tumor inhibition effects. 

The results demonstrate ~10- 
fold decrease in metastatic 
tumor nodules in animals 
injected with cells pretreated 
with NPs coloaded with 
antisense-miR-21 and 
antisense-miR-10b 
combination, compared to 
animals injected with cells 
pretreated with control NPs. 

Compared the control NPs 
treated mice, cramble peptide 
conjugated NPs treated mice had 
a 40% reduction in tumor 
growth. 

NA [461]  

X. Kong et al.                                                                                                                                                                                                           



Progress in Materials Science 134 (2023) 101070

16

cells in vitro. When combining with magnetic navigation, this treatment can trigger DNA damage and poly (ADP-ribose) polymerase 
(PARP) inhibition, and subsequently showed the excellent biocompatibility and efficacy by extending the median survival from 34 to 
61 days in BRCA-mutant xenograft mice model with no obvious adverse effect in healthy organs [129]. 

Several studies have proved the role of Au nanoparticles (Au NPs) in the modulation of TNBC therapeutics through the inhibition of 
cell proliferation, progression, and metastasis [130-132]. Cu-tetra(4-carboxyphenyl) porphyrin chloride (Fe (III)) (Cu-TCPP(Fe)) metal 
organic framework (MOF)-based nanosheets were incorporated with Au nanoparticles (Au NPs) via in situ nucleation and loaded with 
RSL3 via π-π stacking, which were finally modified with polyethylene glycol (PEG) and iRGD for tumor-targeted drug delivery. 
Specifically, the Au NPs, which give evidence of glucose oxidase-like activities, can lead to the simultaneous inhibition of the GPX4/ 
GSH and FSP1/CoQ10H2 pathways and cooperate with the GPX4-deactivating function of RSL3 to induce pronounced ferroptotic 
damage. Otherwise, coordination compound-based zinc oxide (ZnO) NPs show great promise for a future potential use in the therapy of 
TNBC [133,134]. 

2.2. Types of ligands on nanoparticles for targeting at TNBC 

Ligands are the small stretch of nucleotides, oligopeptides, antibodies or small molecules themselves, which bind specifically to its 
receptor via ligand-receptor interactions. Ligands like Arg-Gly-Asp (RGD) peptides, antibodies, aptamers, and other small molecules 
(such as folic acid, BSA, etc.), are well-known ligands commonly used for targeted or probe-based diagnostic in cancer nanomedicines. 
The most commonly used ligands for surface-modification of nanoparticle drug delivery systems for targeting at TNBC were listed in 
Table 2 [136-148]. 

2.2.1. Arg-Gly-Asp (RGD) peptide ligands 
The RGD peptide ligands have become widely used for targeting at several cancers, including TNBC. Portela et al. reported a highly 

sensitive analysis of c(RGDfC) by surface enhanced Raman spectroscopy (SERS) using a nanogap antennas in an aqueous environment. 
Good agreement between characteristic peaks of the SERS and the Raman spectra of bulk c(RGDfC) with its peptide’s constituents was 
observed. The observed blinking of the SERS spectra and synchronization of intensity fluctuations suggest that the SERS spectrum 
acquired from a nanogap antennas was dominated by the spectrum of single to a few molecules [149]. Kakinoki et al. conducted the 
mobile RGDS. Cell culture substrates were coated with ABA-type block copolymers composed of poly (2-methacryloyloxyethyl 
phosphorylcholine-co-n-butyl methacrylate) segments (A) and a polyrotaxane (PRX) unit with RGDS bound to α-cyclodextrin (B). 
Adhesion, morphological changes and actin filament formation of human umbilical vein endothelial cells were reduced in a large 
extent on the nanoparticle surfaces containing mobile PRX-RGDS, as compared to the immobile RGDS surfaces constructed from 
random copolymers with RGDS side groups (Prop-andom-RGDS) [150]. 

Mesoporous silica nanoparticles (MPSNPs) were used as nanocarriers to deliver anti-cancer drugs, due to its inorganic structural 
nature and excellent biocompatibility features, for treatment of TNBC [151-153]. Aquib et al. have made an excellent review on 
MPSNPs and its clinical applications. According to this review, both breast cancer cells and angiogenic endothelial cells are over- 
expressed with endothelial αvβ3 integrins which are the targets of RGD peptides [154]. Various studies have reported procedures 
for the conjugation of MPSNPs with a variety of linear and cyclic RGD peptides having free primary amine group of lysine amino acid 
or free thiol groups of cysteine amino acid [155]. Surface conjugation with RGD peptides will endow MPSNPs to have abilities to target 
at tumor sites where the endothelial αvβ3 integrins are over-expressed. A study reported the covalent conjugation of MPSNPs with a 
cyclic RGDFK and a linear peptide having a sequence of seven continuous lysine residues (K7RGD). These systems were used for the 
assessment of the RGD conformation in an uptake by mammalian cells [156]. In comparison with MPSNPs without functionalization, 
the uptake of cyclic RGD-grafted MPSNPs by HeLa cells was 3.6 times higher, while its internalization was approximately two times 
higher in MCF-7 cells. Conversely, the uptake of linear K7RGD peptides by HeLa cells was approximately three times higher, while its 
internalization was 1.1 times higher in MCF-7 cells, as compared to MPSNPs without surface modification with RGD peptides. 
Similarly, in Huo et al.’s work, the researchers have explored the application of Arg-Gly-Asp (RGD) peptide for receptor selective 
targeting of the MSNPs with higher affinity, specificity and selectivity to the integrin avb3 receptors [157]. Surface grafting of the 
RGD-MSNPs conjugates with additional disulfide S-S bond will endue the nanocarriers to become redox responsive in tumor micro-
environments, where reducing GSH level is high [158]. According to Barkat et al.’s review, despite the proven efficacy of MSNPs in 
majority of the preclinical studies, their applications in real world clinical treatments of tumors still require much more research efforts 
[159]. 

2.2.2. Antibodies as targeting ligands 
Due to the abilities of selective targeting and controlled drug release, nanomedicines might provide a new hope for the treatment of 

TNBC. Antibodies and their fragments attack a lot of attention to serve as surface ligands to endow nanomedicines to be able to 
selectively bind to specific receptors that are overexpressed on TNBC cells. Therefore, antibody-modified nanoparticles hold great 
promise to achieve targeted drug delivery, enhanced therapeutic efficacy and reduced adverse effects. Several methods have been 
described to immobilize antibodies on the surface of nanoparticles. However, selecting the most appropriate antibody for each 
application is still challenging, but is also imperative to preserve antigen binding ability and to yield stable antibody-conjugated 
nanoparticles. Nanoparticles could be functionalized with antibodies or antibody fragments by adsorption, covalent binding or 
using adopter molecules. When immobilizing antibodies, conjugation should ensure a desired amount of these biomolecules (density) 
per nanoparticle and a correct orientation [10]. The higher the density of antibody molecules, the lower the spatial accessibility of the 
antigen due to steric hindrance among antibodies in proximity [160]. Moreover, the coupling method must yield a stable bond and 
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Table 3 
Strategies for the development of antibody-nanoparticle conjugates: advantages, disadvantages, applications and mechanisms for cancer treatment.  

Strategy Explanation Advantages Disadvantages Mechanism features Ref. 

Adsorption A non-covalent 
immobilization strategy via 
physical adsorption and ionic 
binding. 

1) Simple and less time- 
consuming; 
2) No demand for 
modification of Ab or 
activation of NP; 3) 
Oriented binding (ionic 
adsorption) 

1) Reversible binding; 
2) Lack of stability; 
3) Use of Ab at high 
concentrations; 
4) Hydrophobic 
interactions result in 
poor reproducibility and 
possible Ab 
denaturation; 
5) Electrostatic 
interactions depend on 
pH and ionic strength; 
6) Competitive 
displacement of Ab by 
serum proteins. 

1) Antibodies adsorbed to the 
nanoparticle surface by hydrophobic 
interactions (physical adsorption) or 
electrostatic interactions (ionic 
adsorption). Schematic 
representation of the four possible Ab 
orientations onto the surface of 
nanoparticles. 
2) Works well at a pH higher or lower 
than the isoelectric point of the Ab to 
promote ionic adsorption, as well as 
avoid changes of pH and/or ionic 
strength during the assay that may be 
responsible for the removal of the 
adsorbed molecules. 

[462,463] 

Carbodiimide 
chemistry 

Surface ligand and 
nanoparticle were chemically 
linked via coupling between 
amine groups in ligand and 
carboxylic acid moiety on 
nanoparticles. 

No demand for 
modification of Ab 

1) Lack of control over 
Ab orientation (random 
binding) 
2) Antigen binding 
ability may decrease due 
to steric hindrance of the 
antigen-recognition site 
3) Activation of NP is 
required 
4) Usually performed in 
a two-step reaction to 
avoid undesirable cross- 
linking 

1) During bioconjugation with the 
carboxylic moiety, 1-ethyl-3-(-3- 
dimethylaminopropyl) carbodiimide 
(EDC), reacts with the carboxylic acid 
groups on the surface of nanoparticles 
and an unstable amine-reactive 
intermediate (O-acylisourea ester). 2) 
If it fails to react with an amine in an 
aqueous solution, the O-acylisourea 
ester will hydrolyze and regenerate 
the carboxylic acid group. Then, to 
stabilize this intermediate, NHS or 
sulfo-NHS converts this amine- 
reactive ester into a semi-stable active 
ester. Both NHS and sulfo-NHS esters 
are reactive towards amine groups on 
the antibody, releasing the NHS/ 
sulfo-NHS group and creating stable 
amide linkages. 
3) At pH 4.5, the most efficient 
immobilization was obtained on 
carboxyl surfaces activated by EDC/ 
sulfo-NHS, followed by EDC/NHS and 
then EDC with the least efficient 
coupling response. 

[464,465] 

Maleimide 
chemistry 

At pH values between 6.5 and 
7.5, a stable thioether linkage 
was formed via alkylation 
sulfhydryl reaction on the 
double bond of maleimide. 

Oriented binding 1) Associated to a multi- 
step protocol 
2) Reduction or 
thiolation of Ab is 
typically needed 
3) Non-selectivity of 
maleimide toward 
cysteine allows exchange 
reactions with thiols in 
serum 

1) Site-selective Ab conjugation based 
on disulfide bridging using next 
generation maleimides (NGM). 
Reduction of Ab with tris (2- 
carboxyethyl) phosphine (TCEP), 
followed by disulfide bond rebridging 
using the DBM-C2 reagent 
(dibromomaleimide, DBM, with a C-2 
linker) in borate buffered s aline (BBS) 
solution. Generation of the DBM-C2 
reagent in a two-step process: i) 
treatment of dibromomaleic acid with 
glycine at reflux in acetic acid to 
induce ring closure and formation of 
DBM-C2-acid; and ii) coupling of 
DBM-C2-acid with a functional 
amine, using N-ethoxycarbonyl-2- 
ethoxy-1,2-dihydroquinoline (EEDQ) 
in acetonitrile. 
2) 1C1 Fab-NP conjugates prepared 
with PEG chains of 7–23 units present 
higher conjugation efficiencies as 
comparison to those with a 4-unit 
spacer arm (PEG4). 

[466,467] 

“Click” 
chemistry 

Chemical reactions with 
orthogonality, and site- 
specificity. 

1) Site-specific bio- 
conjugation 
2) High reaction rates 
(iEDDA and CuAAC) 

1) Cu(I)-induced toxicity 
restricts applications of 
CuAAC 
2) OCT-based derivatives 

1) “Click” reactions include: i) cyclo- 
addition reactions, namely 1,3- 
dipolar (e.g., Cu(I)-catalyzed[3 + 2] 
azide-alkyne cycloaddition (CuAAC) 

[468] 

(continued on next page) 
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guarantee that the biological activity of the antibody is reserved [10,161]. Some commonly used methods for covalent bonding of 
antibodies onto nanoparticles were listed in Table 3. Antibodies could also be grafted onto the surface of nanoparticles via noncovalent 
interactions based on biotin-avidin system, which is presented in Fig. 3. 

2.3. Nanoparticles with ligands responsive to tumor microenvironment 

According to prior research, cancer cells proliferate and live, including secreted active factors, etc. in a particular area of cancer 
microenvironments in cancer tissues. The interaction of cancer cells with the microenvironment is like a relationship between the seeds 
and soil. A tumor microenvironment could promote cancer formation, proliferation and metastasis, induce angiogenesis, inhibit 
immune response, breed cancer stem cells, and stimulate over-expression of multidrug resistance (MDR) genes, leading to drug 
tolerance. Considering the support and promotional effect of the TNBC microenvironment to cancer cells and cancer tissues, re-
searchers have tried to change the “soil” microenvironment to inhibit tumor growth and achieve effective cancer treatment. The TNBC 
microenvironment has some characteristics different from normal cell physiological environments, such as low pH value, low oxygen 
level, high temperature, high concentration of glutathione (GSH) and high expression enzyme, etc.[162,163]. Therefore, with the 

Table 3 (continued ) 

Strategy Explanation Advantages Disadvantages Mechanism features Ref. 

(SPAAC) are more 
expensive than their 
alkyne counterparts 
3) Moderate second 
order reaction rate 
constants (SPAAC) 

reaction and strain-promoted[3 + 2] 
azide-alkyne cycloaddition (SPAAC) 
reaction) and hetero Diels-Alder (e.g., 
inverse electron demand[4 + 2] Diels- 
Alder (iEDDA) reaction); ii) 
Staudinger ligation; and iii) “Thiol- 
ene” reaction. 
2) A novel strategy that combines 
“click chemistry” and assisted 
targeting of immune cells to deliver 
doxorubicin (DOX)-loaded NPs into 
poorly vascularized regions of the 
tumor, for breast cancer treatment. 
CD11b antibodies (αCD11b) were 
modified with trans-cyclooctene 
(TCO) using a TCO-PEG4-NHS linker, 
while DOX-loaded mesoporous silica 
NPs (DOX-MSN) were functionalized 
with Tz to allow conjugation through 
iEDDA reaction. 

Biotin-avidin Coupling via biotin-avidin 
interaction, which is the 
strongest non-covalent 
interaction between a protein 
and a ligand. 

1) Mostly oriented (Fc- 
specific biotinylation); 
2) Highly stable and 
resistant under extreme 
conditions 

1) Modification of Ab or 
NP (biotinylation) is 
required 
2) Difficult to control Ab: 
NP stoichiometry 
3) Possible 
immunogenicity (avidin 
and streptavidin) 
4) Expensive technique 

1) Affinity-based system rely on the 
strong binding between a small 
molecule (biotin) and a biotin- 
binding protein. 
2) Coupling using biotin-avidin 
interaction requires chemical 
modification of the antibody with 
biotin (biotinylation) and 
functionalization of the nanoparticle 
with avidin or its derivatives. 
3) A site-specific biotinylation at the 
Fc region ensures an oriented 
immobilization of the Ab via: i) free 
sulfhydryl groups, obtained after 
reduction of disulfide bonds, that 
react with maleimide-biotin; or ii) 
polysaccharide moieties, through 
oxidation of carbohydrate hydroxyls 
to reactive aldehydes towards 
hydrazide–biotin, yielding an 
hydrazone bond. 

[469,470] 

Reprinted from Marques AC, Costa PJ, Velho S, and Amaral MH. Functionalizing nanoparticles with cancer-targeting antibodies: A comparison of 
strategies. J Control Release 2020;320:180–200. https://doi.org/10.1016/j.jconrel.2020.01.035. Copyright © 2020 Elsevier B.V. All rights reserved. 
Abbreviations: Ab - Antibody; CA - Carbonic anhydrase; CD - Cluster of differentiation; CEA - Carcinoembryonic antigen; CIC - Cancer-initiating cells; 
CuAAC - Copper (I)-catalyzed azide-alkyne cycloaddition; DR - Death receptor; EGFR - Epidermal growth factor receptor; EphA - Ephrin type-A 
receptor; Fab - Antigen-binding fragment; Fc - Fragment crystallizable; GD2 - Disialoganglioside; GPC - Glypican; hAb - Half-antibody; HER - 
Human epidermal growth factor receptor; iEDDA - Inverse electron demand Diels-Alder; mAb - Monoclonal antibody; Nb - Nanobody; NP - Nano-
particle; NRP - Neuropilin; OCT - Cyclooctyne; SCC - Squamous cell carcinoma; scFv - Single-chain variable fragment; SPAAC - Strain-promoted azide- 
alkyne cycloaddition; TEM - Tumor endothelial marker; TF - Tissue factor; TfR - Transferrin receptor; Trop2 - Trophoblast cell-surface antigen 2; VEGF 
- Vascular endothelial growth factor; VEGFR - Vascular endothelial growth factor receptor. 
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above-mentioned characteristics of TNBC microenvironment as stimulation factors, it is possible to significantly improve the thera-
peutic effect of anti-cancer drugs based on the design of tumor microenvironment-responsive nano drug delivery systems. 

2.3.1. Temperature responsive nano drug delivery systems 
In general, temperature-responsive nanomaterials are composed of both hydrophilic and hydrophobic moieties in their molecular 

structures. The molecules as a whole may show hydrophilicity and volume swelling at low temperatures since there is a strong 
intermolecular hydrogen bonding interactions between the hydrophilic groups and the water solvent molecules. Upon increasing the 
temperature, the hydrogen bonds will be weakened or destroyed gradually, and the hydrophilicity of the molecule will also be 
weakened gradually, resulting in the change of the whole molecule from hydrophilicity to hydrophobicity (via formation of intra-
molecular hydrogen bonding), as well as shrinkage of the volume. Hence, the structure, molecular size, and physicochemical prop-
erties of the temperature-responsive nano drug delivery system will change correspondingly with changes of the environmental 
temperature. Consequently, the payload drugs release rate will also change or increase at a higher temperature tumor microenvi-
ronment. In this regard, temperature can be used to control the drug release rate. According to prior research, the local temperatures of 
many tumor tissues are in general slightly higher than that of normal tissues by 5 ~ 10 ◦C. There may be an accelerated blood flow and 
higher permeability in the tumor blood vessels when the local temperature is high. Accordingly, diffusive release of the payload drugs 
becomes more rapidly in local tumor tissues with high temperatures. In such a way, temperature-responsive nano drug delivery 
systems could be used to selectively release payload drugs at tumor sites for killing cancer cells. Temperature responsive nanocarriers 
(e.g., temperature responsive micelles, liposomes and polymeric nanoparticles, etc.) have attracted much attention for controlled 
delivery ad release of anti-cancer drugs [164]. 

Poly (N-isopropylacrylamide) (PNIPAM) is one of the temperature-responsive materials attracting a great attention [165,166]. It 
displays a low critical solution temperature (LCST) of about 32 ◦C, close to physiological temperatures [167]. When the ambient 
temperature is higher than its LCST, the PNIPAM shows strong hydrophobicity. Decreasing the temperature to be below the LCST will 
change PNIPAM from hydrophobic to strongly hydrophilic [168]. Through reversible addition-fragmentation chain transfer (RAFT) 
polymerization and free radical polymerization, a NPAM oligomer (NOS) with low molecular weight could be synthesized, which was 
further used for preparation of temperature-responsive liposomes, with better controlled and improved drug release property [169]. 

Fig. 3. Covalent coupling and non-covalent interaction of antibodies and nanoparticles. Chemical bond formation for the covalent coupling 
methods could be achieved by the use of coupling reagents, such as carbodiimide, maleimide, and “click” chemistry reagent. The non-covalent 
conjugation between antibodies and nanoparticles could be achieved by the use of biotin-avidin interaction. Modified and reprinted from ref. 
[10]. Reproduction with permission from Royal Society of Chemistry. Copyright © 2020, Royal Society of Chemistry. 
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Star-shaped porphyrin-cored poly(L-lactide)-block-poly(N-isopropylacrylamide) (SPPLA-PNIPAM) block copolymers were success-
fully synthesized via the ring-opening polymerization (ROP) and RAFT polymerization[170], and were shown to be temperature 
responsive. Upon decreasing the PNIPAM block monomer chain length, the morphology of SPPLA-PNIPAM copolymer in an aqueous 
solution was changed from spherical micelle to vesicle through wormlike micelle transition, with the corresponding LCSTs being 37.9, 
37.2 and 35.9 ℃, respectively. The SPPLA-PNIPAM block copolymers were shown to have good application prospect in tumor 
treatment. Meanwhile, the temperature responsive PNIPAM was introduced to the surface of mesoporous magnetic nanoparticles by 
Asghar et al. for combined delivery of both hydrophilic doxorubicin (DOX) and hydrophobic curcumin (CUR) [171]. Their results 
showed that the in vitro release of the two payload drugs behaves in a temperature dependent manner with a slow drug release rate 
below LCST and sustained drug release above LCST. In vitro cellular experiments showed that the nanocarrier alone had no cyto-
toxicity, and the anti-cancer activity was significantly improved after drug loading. Different LCSTs of pure PNIPAM and MIO-P 
(NIPAM-MAm) nanocomposites were estimated by DSC (Fig. 4). 

In addition to PNIPAM, other nanocarrier materials possessing temperature-responsive property also play an important role in the 

Fig. 4. Differential scanning calorimeter (DSC) thermograms of aqueous solutions of (a) PNIPAM and MIO-P(NIPAM-MAm) nanocomposites. Digital 
images of aqueous dispersion of (b) PNIPAM and (c) MIO-P(NIPAM-MAm) nanocomposite below and above LCST, respectively. Modified and 
reprinted from ref. [171]. Reproduction with permission from Royal Society of Chemistry. Copyright © 2017, Royal Society of Chemistry. LCST 
represents low critical solution temperature. 
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treatment of tumors. For example, in the research by Sudhakar et al., a series of temperature-responsive nanomaterials were prepared 
by polymerization of N-vinylcaprolactam (NVCL). And then CUR was loaded as an anti-cancer drug. Drug release experiments showed 
that PNVCL had practical potential to be used a nanocarrier for delivery of anti-cancer drugs [172,173]. Furthermore, Enaam et al. 
introduced temperature responsive poly(ethylene glycol) (PEG) polymer P(MEO2MA-co-OEGMA) onto the surface of Fe3O4 magnetic 
nanoparticles, which were used to deliver Adriamycin (an anti-cancer model drug) [174]. It was found that the composite magnetic 
nanoparticles could response to the local temperature changes and release anti-cancer drugs gradually at physiological temperatures. 
Meanwhile, temperature responsive nanogel polymers were prepared by Seo et al. by grafting poly(L-lactide) onto pullulan [175]. The 
authors also discovered that the release of DOX model drug could be controlled by changing medium temperature, which was expected 
to be a sustained drug delivery/release system for tumor treatment. Considering its good biocompatibility, low toxicity, and the 
adjustability of thermo-sensitivity for controlling the payload drug release rate, temperature responsive nano drug delivery systems 
have a very important prospect in applications for the treatment of tumors. However, it shall be noted that there are some limitations in 
the temperature responsive nano drug delivery systems, such as high cost, poor thermo-sensitivity and unclear bio-degradation 
mechanisms, which should be taken into account in the follow-up research. 

2.3.2. pH-responsive nano drug delivery systems 
The pH value of normal tissues and blood is about 7.4, while the intercellular substance of tumor tissues and the interior of tumor 

cells are weakly acidic. The pH value in endosome of tumor cells can be as low as 5.5, and that in lysosomal body is about 5.0. On the 
basis of the significant decrease of pH values in tumor tissues and cells, the design of pH responsive nano drug delivery systems has 
become a hot research topic in tumor therapy [176-178]. The molecular structure of pH responsive materials contains some acid-base 
groups in general, such as carboxylic acid group, amino group, imine linkage, hydrazone, etc. When the anti-cancer drugs are delivered 
to a tumor site with these pH-sensitive groups on the surface of nanocarriers, the extent of ionization of these acid-base groups will 
change along with the local pH values. Subsequently, the charge, swelling degree and osmotic pressure of naoncarriers will change 
according to the local pH values, leading to local environment-stimulated release of the payload drugs so as to effectively kill cancer 
cells. 

Polymeric micelles have attracted increasingly more attention owing to their ability to accommodate hydrophobic drugs, easy 
preparation and ability to exert controlled drug release. There has been extensive design, use, and development of pH-responsive 
micelles for the delivery of anti-cancer drugs at present [179,180]. For instance, Li et al. linked DOX, an anti-cancer drug, to PEG 
via pH responsive benzoic acid imine bond, which could self-assemble into stable spherical micelles under neutral conditions [181]. It 
was observed that under acidic microenvironments in tumor tissues (pH ~ 6.8) and lysosome (pH ~ 5.0), the micelle would disin-
tegrate to release the payload DOX drug gradually. Zhang et al. prepared a pH-responsive block copolymer micelle from PEG, 
glyoxylated dextran and DOX [182]. Their results indicated that 90% of the encapsulated DOX drug could be released rapidly in the 
acidic condition of pH = 5.5, while only a small fraction of drugs was released in the neutral condition [183]. In addition, in order to 
overcome the multidrug resistance of paclitaxel, Liu et al. developed a low pH-responsive hyaluronic acid-deoxycholic acid-histidine 
micelle able to target at both endosome and CD44 receptor (Fig. 5) [184]. The micelle could effectively inhibit the growth of tumor 
cells in MCF-7/Adr tumor-bearing mice, and exhibit a good ability to overcome multidrug resistance. 

Other types of pH-responsive nano drug delivery systems have also been developed for tumor treatment. Ali Pourjavadi et al. 
designed and synthesized novel mesoporous silica nanoparticles (MCM-41) with a double layer coating of pH-responsive poly (acrylic 

Fig. 5. Schematic illustration on proposed mechanism for multidrug resistance (MDR) reversion of PTX/HA-DOCA-His micelles in MCF-7/Adr cells. 
(A) P-gp mediates PTX efflux out of cellular membrane in MCF-7/Adr cells, (B) CD44 receptor-mediated endocytosis for internalization of micelles. 
The low pH in the endosome triggers PTX release from PTX/HA-DOCA-His micelles to conquer the MDR reversion. Modified and reprinted from the 
ref. [187]. Copyright © 2018, Elsevier B.V. Reproduction with permission from Elsevier. 
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acid-co-itaconic acid) and human serum albumin (HSA) for the delivery of Gemcitabine. According to their results, MCM-41 reaches 
the highest drug release rate at pH 5.5 (pH of the endosome) due to the shrinkage of outer layer at pH 5.5[185]. Meanwhile, in an 
experiment carried out by Gu et al., a NGR-modified docetaxel-loaded pH-responsive liposomes (DTX/NGR-PLL) was prepared for 
targeted delivery of docetaxel [186]. The drug encapsulation efficiency was about 70%, and the drug release rate is pH value 
dependent. Simultaneously, both in vitro and in vivo experiments verified that the DTX/NGR-PLL liposome has specific targeting 
ability and enhanced anti-cancer activity toward human fibrosarcoma cells. Tyagi et al. reported a simple and easy method for 
preparation of graphene nanostrip-poly(vinylpyrrolidone) nanoparticles [188]. The graphene GRP-PVP-NP has dual functions of pH 
responsivity and anti-cancer drug delivery. The DOX was loaded by supramolecular interaction, and could be effectively released 
under the conditions of low pH values and low oxygen concentration in tumor microenvironments. 

pH-responsive nano drug delivery system is attractive for drug delivery system in cancer treatment, and it is also a hot topic in 
cancer research and treatment. However, its pH response is dependent on many factors, such as the particle size, morphology, zeta 
potential, surface properties, drugs loaded, etc. Therefore, further systematic investigation is required for each pH responsive nano 
drug delivery system so that a better control in the drug release can be achieved. 

2.3.3. Redox-responsive nanoparticle drug delivery systems 
Reactive oxygen species (ROS) are involved in the regulation of many physiological and pathological processes of human bodies. 

The balance of redox states inside tumor cells is dependent on the oxidation and reduction states of NADPH/NADP+ and glutathione 
(GSH, GSH/GSSG), where under a reducing condition, the GSH concentration is higher than that of NADPH, and the former then 
regulates the redox microenvironments of tumor cells [189-191]. At the molecular level, GSH controls the reducing conditions via the 

Table 4 
Key features of the synthetic processes for redox-responsive nanogels fabrication.  

Nanocarriers Method Concrete operations and mechanisms Characteristics & problems Ref.       

Polymer NPs Living radical 
polymerization 

Incorporation of redox-responsive cross- 
linkers via radical polymerization, 
including nitroxide-mediated 
polymerization (NMP), atom transfer 
radical polymerization (ATRP), 
reversible addition–fragmentation 
chain transfer (RAFT) polymerization, 
and reverse iodine transfer 
polymerization (RITP)  

(1) The resulting NPs have low 
size polydispersity. 

The NPs dispersed in water 
showed the 4.5-fold increase 
in the quantum efficiency 
when compared with the free 
dye mol- ecules in water. 

[471]       

Polymer NPs Michael addition 
polymerization 

Michael addition reaction between 
secondary (2◦) amines and electron 
deficient olefins, using disulfide cross- 
linker as redox responsive moiety  

(1) The NPs can realize precise 
ratiometric control of drugs 
being loaded, increase cellular 
uptake of the drugs, induce 
mitochondrial dysfunction 
and augment tumor treatment 
efficiency by inducing 
apoptosis. 

the NPs exhibited 
satisfactory performance in 
promoting apoptosis of tumor 
cells and achieved high 
therapeutic outcomes for 
multi-drug resistance tumors. 

[472]       

Polymer 
nanogel 

Self-cross- 
linking of thiol 
groups 

Simple thiol–disulfide exchange 
reaction between two polymer chains 
leads to formation of redox responsive 
nanogels, 2-(pyridin-2-yl disulfanyl) 
ethyl acrylate (PDSA) plays a vital role; 
molecules of biological interests can be 
attached. 

These robust nanowires could be 
reduced to the fully solvated polymer, 
representing a novel, reversible cross- 
linking procedure for functional P3HT- 
based nanowire fibrils. 

[473]       

Dendrimeric 
nanogel 

Branched armed 
cross-linking 

Dendrimeric disulfide cross-linked 
branched nanogels have been 
synthesized from branched multi-armed 
PEG derivatives.  

(1) The bioreducible nanogels 
improve antitumor drug 
internalization, contribute to 
endosomal escape, and realize 
intracellular drug-controlled 
release. 

The doxorubicin-loaded 
nanogels afford high anti-
tumor efficiency and reduce 
the side effects to BALB/c 
mice bearing 4 T1 tumor. 

[474]        
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Table 5 
Reported important studies with redox-responsive drug carriers.  

Entry Nanocarrier Loading-drugs Drug release rate Methods Characteristics Ref. 

1 F68@SS-COFs 
for loading of 
DOX 

Doxorubicin (DOX) The DOX release achieves a 
cumulative release of about 
23% of total encapsulated 
drug in 1 h and about 90% 
in 24 h when incubated 
with PBS pH 5.0 with 10 
mm glutathione (GSH). 

PEGylation of redox- 
responsive covalent organic 
frameworks (COFs) 

High DOX-loading, rapid 
response to release DOX 

[231] 

2 MTX-FTC NPs Methotrexate (MTX) In the presence of 10 mM of 
GSH, a faster drug release 
took place owing to the 
breakage of the 
crosslinking points in the 
NP structure, exhibiting a 
release equal to 59.85% in 
the first 30 min and up to 
88.4% in 24 h. 

l-Cysteine and folic acid 
molecules were linked to 
chitosan to form FTC NPs. 

Tumor specificity Tumor 
specific targeting and redox 
responsive MTX drug 
release 

[475] 

3 Xyl-SS-Cur-5- 
FUSA 

Curcumin and 5-FU More than 80% of 
curcumin and 74% 5-FUSA 
drug were released at pH 
5.0 over 48 h 

A disulphide (-S-S-) linkage 
was used to render Xyl-SS- 
Cur-5-FUSA redox 
responsive. 

High loading of curcumin 
and 5-FUSA, high 
cytotoxicity to human 
colorectal cancer cells (HT- 
29, HCT-15). 

[476] 

4 Liposomes Hydrophilic and 
hydrophobic drugs 

NA Self-assembly of tetraphenyl 
ethylene (TPE) into 
liposome-like vesicles, able 
to deliver both hydrophilic 
and hydrophobic drugs. 

Good targeting, high drug 
loading 

[477] 

5 Organosilica- 
micelles 

Chemotherapy drugs NA disulfide-doped 
organosilica-micellar hybrid 
nanoparticles, PEG and PEI 
modified, 

Two-stages redox- 
responsive, long blood 
circulation duration, high 
tumor accumulation, 
improved antitumor 
efficacy 

[223] 

6 PEG- 
dendrimer- 
camptothecin 

Camptothecin Be able to release ~ 70% of 
camptothecin 

PEGylation of dendrimer 
with a –S-S- linkage for 
loading of camptothecin 

Glutathione redox 
responsive, able to release 
~ 70% of camptothecin, 
high level gene transfection 

[478] 

7 (PEI-oxliPt(IV) 
@RNBC/GOD 

RNase A protein (i.e., 
RNase A 
nitrophenylboronic 
conjugate, RNBC) and 
glucose oxidase (GOD) 

The release of RNBC in the 
absence of sodium 
ascorbate was negligible, 
and only 6.2% of protein 
release was attained within 
56 h. In comparison, a 4- 
fold increase in the 
accumulative release of 
RNBC was obtained in the 
presence of 10 mM sodium 
ascorbate within the same 
incubation time. 

Cross-link of 
polyethylenimine with 
oxaliplatin (IV)) for delivery 
of ROS-cleavable, caged 
RNase A/ glucose oxidase. 

Dissociate in reducing 
environment, release active 
oxaliplatin drug/protein, 
high tumor cell killing 
efficacy 

[477] 

8 Celecoxib- 
DOX-SiO2 NPs 

DOX and celecoxib The addition of DTT (10 ×
10–3 m) that can cleave 
disulfide bonds drastically 
promoted the release of 
DOX and celecoxib at pH 
7.4 (greater than50%, 
greater than70%), and even 
more effectively at pH 5.0 
(greater than80%, greater 
than80%). 

Celecoxib-modified 
mesoporous silica 
nanoparticles with poly 
(β-cyclodextrin) wrapping 
(MSCPs) for delivery of 
doxorubicin (DOX) 

Co-deliver DOX & celecoxib, 
block COX-2/PGE2 

signaling, enhance DOX’s 
antitumor activity, 
inhibition of tumor 
repopulation, eliminate 
expansion of cancer cells, 
metastasis, and drug 
resistance. 

[227] 

9 MMC@BSA Hydrophobic drugs NA Magnetic microcapsules 
(MMCs) were coated with 
albumin shell for delivery of 
hydrophobic drugs. 

Excellent magnetism- 
mediated shifting ability 
and targeted hydrophobic 
drug delivery 

[225] 

10 NCssGEM NPs. Camptothecin and 
gemcitabine 

NA AIEgens (NPAPF) was 
coupled with camptothecin- 
gemcitabine (CPT-ss-GEM) 
to form NCssGEM NPs. 

NIR light and redox 
responsive, high tumor 
penetration and anticancer 
efficacies 

[230] 

Abbreviation: COFs: covalent organic frameworks; DOX: doxorubicin; MTX: methotrexate; FTC: folate redox-responsive chitosan; 5-FUSA: 5-fluo-
rouracil-stearic acid; TPE: tetraphenyl ethylene; PEG: polyethylene glycol; PEI: amido-bonded polyethylenimine; MSCPS: mesoporous silica nano-
particles with poly(β-cyclodextrin) wrapping; MMCs: magnetic microcapsules; GSH: glutathione; 
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formation and fragmentation of disulfide bonds, and scavenges excess reactive oxygen species (ROS), thereby getting oxidized itself to 
GSSG. The GSSG was then again reduced to GSH by glutathione reductase using NADPH as a sacrificial electron donor substrate. The 
GSH concentration is higher (2–10 mM) than the extracellular compartment (2–20 µM) [192,193]. Especially, the tumor tissues have 
been reported to exhibit 4-fold higher GSH concentration than those in normal tissues [194]. This significant difference in the GSH 
level makes redox-responsive nanogels a most attractive platform for tumor-targeted drug delivery. 

In general, redox-responsive disulfide S-S bonds were introduced into nano materials by various physical or chemical methods to 
endow them become redox response. Upon uptake through endocytosis, the disulfide S-S bonds on nanocarriers break and the 
nanocarrier structure was destroyed owing to the reduction of high concentration of GSH in the cell, which leads to a rapid release of 
the payload drugs. A number of chemodrugs such as doxorubicin (DOX) [195,196], paclitaxel (PTX) [197-200], indomethacin 
[201,202], cisplatin [203], 5-fluorouracil [204-206], etoposide [207], irinotecan [208], curcumin [209-212], protein [213], peptides 
[214], and nucleic acids [215-217] (e.g., siRNA, antisense oligodeoxynucleotide, and DNA) have been delivered to cancer cells in a 
targeted, controlled release manner. The basic principle for the fabrication of these systems is to incorporate redox-sensitive units, such 
as disulfide, ditellurium, and diselenide bonds onto nanocarriers. Cleavage of these redox-sensitive bonds was achieved in the presence 
of reducing agents. For example, the oxidized S-S bond will be reductively cleaved upon receiving an electron from a reducing reagent. 
The selection of a suitable synthetic strategy and design as well as fabrication of nanogel matrix with redox-responsive units are the 
most critical issues, which require an extensive and more in-depth understanding of the concepts of chemical and biomedical science. 
Cross-linkers are the principal ingredient for the fabrication of redox-responsive nanogels. They are the functional redox-active units 
containing disulfide, ditellurium, and diselenide bonds, forming 3D cross-linked redox-responsive networks to hold the therapeutics 
and to break in response to a redox trigger to release the payload drugs, and undergo biodegradation. The critical techniques and key 
points of the synthetic process are shown in Table 4 [218,219]. 

Development of redox-responsive drug delivery nanocarriers has recently become an emerging area of research. ROS is an 
important cellular signal species, which can trigger activation of oxidative stress response mechanisms in cells [76,220]. ROS- 
responsive drug delivery carriers currently being developed mostly involve organochalcogens (selenium, tellurium, diselenium, and 
ditellurium), organoboron compounds (aryl boronic ester), sulfur containing compounds (thioether, thioketal, vinyl dithioether), aryl 
oxalates, and ferrocenes, either as cross-linkers or as important constituent of polymeric backbone [221,222]. These redox responsive 
moieties in nanocarriers could utilize the ROS in cancer cells to trigger the release of payload drugs. Table 5 summarizes published 
studies with redox-responsive drug nanocarriers [223-233]. 

2.3.4. Dual and triple stimuli-responsive nanoparticle drug delivery systems 
The characteristics and development trend of temperature responsive, pH responsive and redox responsive nanoparticle drug 

delivery systems are summarized in the Table 6. However, temperature, pH, the GSH concentration and other factors in tumor mi-
croenvironments do not change independently actually, but are correlated to each other. Therefore, there is of great significance to 
integrate the mechanisms of multiple tumor microenvironment stimulated responses into the same nanocarrier to establish a multi- 
stimuli responsive nano drug delivery system to control the release of payload drugs more efficiently and to exert the optimal anti- 
cancer effect [234]. Such multiple stimuli-responsive nanogels possess dual advantages of tumor microenvironment-triggered drug 
release and enhanced therapeutic efficacy. 

At present, there is extensive and broad research on dual-stimuli responsive nano drug delivery system. Temperature- and redox- 
responsive nanogels generally involve a redox-responsive cross-linker and temperature-responsive polymer matrix. Some examples of 
temperature-responsive polymers are poly(N-isopropylacrylamide) (PNIPAAm) [235], poly(N,N′-diethyl acrylamide) [227], poly(N- 
(l)-(1-hydroxymethyl) propylmethacrylamide) [225], and poly(oligo(ethylene oxide)monomethyl ether methacrylate) (POEOMA). 
Fundueanu et al. prepared poly(vinyl alcohol) (PVA) microspheres with glutaraldehyde as a crosslinking agent [236]. In their study, 

Table 6 
Characteristics and development trends of several tumor microenvironment sensitive nano drug delivery systems.  

Drug delivery system Composition Stimuli Sensitivity principle Defects and development 
direction 

Ref. 

Temperature 
responsive nano 
drug delivery 
system 

Thermosensitive polymeric assemblies/liposome 
assemblies/nanocrystal assemblies/metal organic 
frameworks 

Temperature Hydrophilic- 
hydrophobic 
transition 

High cost, temperature 
sensitivity, and difficulty in 
degradation 

[479] 

pH responsive drug 
delivery system 

pH-sensitive organic and inorganic materials, 
including polymers, lipids (liposomes, 
nanoemulsions, and solid-lipid NPs), metal, and 
ceramic NPs 

pH value Ionization or 
hydrolysis of acid- 
base groups 

pH sensitivity, poor 
stability 

[480] 

Redox-responsive 
nano drug 
delivery system 

Representative molecular motifs including 
ferrocene/viologen/tetrathiafulvalene/ 
naphthalene diimide/oligothiophene/disulfide/ 
tris(bipyridine)ruthenium 

GSH 
concentration 

Cleavage of 
disulfide bond 

Less types of carriers, 
limited application scope 

[481] 

Multi-stimuli 
responsive nano 
drug delivery 
system 

Combination of multi-stimuli-responsive 
nanomaterials mentioned above 

Multiple 
factors 

Joint influence of 
multiple factors 

Complex design and 
preparation, mutual 
interference of multiple 
stimuli 

[482]  
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the temperature responsive PNIPAM polymer was grafted on the surface of PVA microspheres to endow thermo-sensitivity [237]. 
Through the reaction of the non-grafted PVA hydroxyl with succinic anhydride, pH responsive carboxyl group was introduced to 
obtain dual pH- and temperature responsive microspheres. The as-prepared PVA microspheres showed good drug loading perfor-
mance, and the corresponding drug release could be controlled by temperature. Furthermore, dual stimuli-responsive nanogels 
generally involve a combination of redox-responsive cross-linkers and pH-responsive polymeric moieties as important nanogel con-
stituents. Some of the important examples of pH-responsive polymers are poly(acrylamide (PAAm) [238], poly(acrylic acid) (PAA) 
[239,240], PMAA [241], poly(2-diethylaminoethyl methacrylate) (PDEAEMA) [242,243], polyethyleneimine [244,245], poly(l- 
lysine) [246,247], poly(2-vinyl pyridine) (P2VP) [248], poly(Nvinylamine) (PVAm) [249], poly(4-vinyl pyridine) (P4VP) [250], 
and chitosan [251,252]. The pH- and redox-responsive nanogels hold excellent potential and play a diverse role in tumor-targeted drug 
delivery and release thanks to their multidimensional role in response to variation in GSH concentration and pH inside the tumor 
cellular compartments. Teo et al. synthesized polymeric micelles with dual pH- and redox-responses by ring opening polymerization of 
functional cyclic carbonate and the adoption of disulfide S-S bond with PEG of different molecular weight as an initiator [253]. DOX 
was loaded via electrostatic interactions. The DOX release rate could be enhanced at least twice under pH 5.0 as compared to a neutral 
condition [254]. Further animal experiment showed that the drug-loaded micelles had high DOX release rate under tumor micro-
environments, resulting in high cytotoxicity and excellent anti-cancer effect. The proposed pH and redox dual responsive micelles 
exhibit good potential as carriers for delivery of anti-cancer drugs. Curcio et al. synthesized pH and redox dual-responsive dextran 
nanogels (DEX-SS) for enhanced intracellular drug delivery via precipitative co-polymerization of methacrylated dextran (DEXMA), 2- 
aminoethylmethacrylate (AEMA) and N, N’-bis (acryloyl) cystamine (BAC). The DEX-SS nanogels were then loaded with methotrexate 
(MTX) [255]. The DEX-SS nanogel was sensitive to the variations of pH and redox environment. Incubation of nanogels in buffer pH 5.0 
containing 10 mM glutathione (GSH) could synergistically increase the mean diameter and the PDI to 750 nm and 0.42, respectively 
[256]. 

Triple-stimuli responsive nanoparticle drug delivery system has gained increasingly more attention due to its multi-stimuli 
responsive, controlled-drug release means and better anti-tumor responses. Triple stimuli-responsive nanogels generally involve a 
combination of a redox-responsive cross-linker along with temperature- and pH-responsive polymer matrix as important nanogel 

Fig. 6. The size distribution and images of TRN in response to different physical and chemical conditions. The z-average size of TRN in response to 
the change of temperature (A, B), the addition of 10 mM DTT (C), and the change of pH from 7.4 to 5.0 (D) acquired by DLS. All the size mea-
surements were carried out at 37 ◦C unless otherwise specified. TEM images of control TRN at room temperature (E), heated at 42 ◦C (F), treated 
with 10 mM DTT for 2 h at 37 ◦C (G), and incubated in pH 5.0 buffer (H). Images were taken with a Hitachi H8000 TEM. Scale bars are 200 nm in (E) 
and (F), and 500 nm in (G) and (H). The size distribution of TRN in response to the addition of 10 mM DTT over time (I). Modified and reprinted 
from ref. [259]. Copyright © 2014, Elsevier Ltd. Reproduction with permission from Elsevier. 
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constituents [257,258]. He et al. developed a pH, thermal, and redox potential triple-responsive expansile nanogel system (TRN), 
which swells at acidic pH, temperatures higher than its transition temperature, and redox reducing environments [259]. The size of the 
TRN quickly expands from 108 to ~ 1200 nm (in diameter), achieving more than 1000-fold size enlargement (in volume), within 2 h in 
a redox reducing environment at body temperature, which could be seen from Fig. 6. Sigma-2 receptor targeting ligand-functionalized 
TRN can selectively accumulate at head and neck tumor, and deliver Pc 4 to target at mitochondria inside cancer cells to achieve 
enhanced photodynamic therapy efficacy. 

In a study reported by Yang et al, poly (N-isopropylacrylamide)-ss-acrylic acid (P(NIPAM-ss-AA)) nanogels based on NIPAM and AA 
cross-linked by N,N’-bis (acryloyl) cystamine (BAC) were constructed to have a property of triple responses toward temperature, pH 
and redox [260]. The nanogels exhibit pH and redox dual responsive-initiated DOX release in vitro and in tumor cells, in which DOX 
release from nanogels was accelerated by low lysosomal pH (pH 4.5) and by highly redox reducing cytosolic environment (10 mM 
GSH). MTT analysis showed that DOX-loaded nanogels could efficiently inhibit the proliferation of HepG2 cells. In vivo animal studies 
demonstrated that DOX-loaded nanogels could accumulate in tumor tissues more efficiently than free DOX, leading to higher tumor 
inhibition activity and fewer side effects. In the presence of BAC crosslinker, Li et al. prepared folic acid (FA)-conjugated pH/tem-
perature/redox multi-stimuli responsive poly(methacrylic acid-co-N, N-bis (acryloyl) cystamine/poly (N-isopropylacrylamide-co- 
glycidyl methacrylate-co-N, N-bis (acryloyl) cystamine) microspheres by a two-stage distillation-precipitation-polymerization process 
with subsequent surface modification with FA [261]. The microsphere loaded with DOX exhibits a high loading capacity of 208.0% 
and an encapsulation efficiency of 85.4%. The resultant microsphere was a promising vector for delivery of anti-cancer drugs in view of 
its advantages of low cytotoxicity and degradability, precise molecular targeting property and multi-stimuli responsive, and controlled 
drug release. So far, the interactions among several stimuli sometimes lead to weakening or disappearance of another factor. Besides, 
multi-stimuli responsive nanocarrier materials are more complex in design and preparation process, resulting in limited applications in 
practice. 

2.4. Nano-Pharmacokinetics in treating TNBC 

The fact that the bioavailability of the free anti-tumor agent was restrained by poor water solubility hampered the development in 
this field. To solve this problem, nanomedicines were designed and improved to enhance the biodistribution of the systematically- 
administered drugs from 1959 [262]. Modified with nanomaterials, the solubility and chemical stability of the free chemothera-
peutic agents are improved, which helps to regulate their pharmacokinetic pattern and protect them from being biodegraded [263]. 
Pharmacokinetic (PK) is defined as the time course of the drug concentrations that reaches different parts of our body after its 
administration. It is the study of the absorption, distribution, metabolism, and excretion of the drug. When compared to free drugs, 
nanomedicines have many pharmacokinetic advantages, such as improved pharmacokinetics profiles, selectivity and specificity, 
controlled drug release, and site-specific multidrug delivery. Apart from offering more advantages in biodistribution and clearance 
aspects, nanomedicines also alleviate the cytotoxicity [264]. Shape, size, surface pattern, and administration route are the significant 
physicochemical features that affect their PK properties. 

2.4.1. Role of nanomaterials in pharmacokinetics 
Nanomaterial conjugation can solve many limitations of conventional drugs and greatly improve the PK profiles. Nanomedicines 

can reach to previously unreachable sites smoothly, extend systemic circulation time and subsequently improve accumulation chance, 
control and delivery drugs specifically by targeting the site to facilitate the availability as well as minimize the toxicity [265]. 

The selectivity and specificity stand as a key feature of nanomedicines. After modifications, nanocarriers can reach the targeting 
action site through active or passive targeting mechanisms. Through enhanced permeability and retention (EPR) effect, nanomedicines 
can be accumulated passively in leaky blood vasculature [266]. By directly interacting with different surface ligands, the active 
targeting can be achieved in various tumor-specific sites in different selective attachments [267]. Besides, the stimuli-response system 
also showed promising effect to control the drug to release at specified sites. The dual-stimuli types, for example, external and internal 
types, were testified to trigger changes of nanomedicines [268]. Internal stimuli includes some changes in the target tissue, such as pH, 
redox, ionic strength, and stress [269], while the external stimuli (also known as physical stimuli) includes temperature, light, electric 
fields, ultrasound, and magnetic force [270]. Nanomaterials can also control the release of drugs to provide sustained drug-release with 
reduced dosing frequency. According to the drug-release mechanisms, controlled-drug-release is divided into four types: diffusion- 
controlled, stimuli-controlled, chemical-reaction-based controlled and solvent-controlled release [271]. Based on the approaches 
discussed above, nanomaterials make it possible to delivery multidrug in a site-specific way. All these pharmacokinetic benefits will 
finally benefit the patients by providing a high therapeutic efficacy with lower systemic adverse effects. 

From the biodistribution and clearance aspects, nanomedicines also have its properties. Biodistribution is defined as the reversible 
transfer of drugs or chemicals from one location to another in a biological system. Nanoparticle properties, exposed physiological 
environment, and route of administration are the critical factors that affect the biodistribution. When the nanoparticles are mod-
ified<8 nm of diameter, they will pass the glomerular capillary membrane of kidneys, and subsequently be filtered into renal tubes and 
cleared by urine [272]. However, though nanomedicines will alleviate the cytotoxicity through plenty of PK benefits, nanomedicines 
also have the potential to cause adverse effects either on human health or the environment, and one of the critical factors is their small 
size. With a hydrophobic surface, several airborne nanoparticles may accumulate in the liver and spleen for a longer period to cause 
toxicity. Also, gut and bone marrow can be organs that may have more materials accumulation when compared to the brain [273]. 
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2.4.2. Problems of nano-pharmacokinetics in TNBC 
Because each dynamic process of absorption, distribution, metabolism and excretion (ADME) of nanomedicines in vivo after 

administration has a complex dynamic process of different forms of nanoparticles and free drugs, coupled with limited understanding 
of the in vivo disposal process of nanomedicines, unclear release mechanism, uncertain potential toxicity and incomplete pharma-
cokinetic behavior, all the factors mentioned above may be some of the critical reasons for the low rate of successful clinical practice of 
nanomedicines applied in TNBC [268,274]. In addition, since there may be many different forms of nanomedicines in the body (such as 
free drugs, loaded drugs, nanoparticles, carrier materials, etc.), how to establish appropriate analytical methods for different forms of 
nanomedicines to truly and accurately reflect the concentration of different forms of nano drugs in biological samples in the body is 
also a problem that needs to be solved urgently to truly describe the pharmacokinetics process of nanomedicines in vivo. On this basis, 
it will further contribute to the targeting research of nanomedicines, evaluate their effectiveness and safety, and improve the rate of 
successful clinical practice of nanomedicines, so as to promote the application and development of nanomedicine delivery systems in 
TNBC [275]. 

2.4.3. Advances in PIT mediated SUPR effect 
A paper published in Nature Reviews Materials analyzed the nanomedicine delivery efficiency after reviewing the relative liter-

ature published between 2005 and 2015 and reported that only 0.7% of the administered nanomedicine was delivered successfully to a 
solid tumor site [276,277]. Though this paper was considered controversial for the view that the efficiencies for antitumor nano-
medicines were low and not improving, it indeed caused a storm in this field, which encouraged scientists to make further efforts to 
solve this problem and improve efficiency [278]. The reason responsible for the very low efficiencies of nanomedicines’ accumulation 
at a tumor site is most probably due to the fact that those nanomedicines are lack of tumor-targeting abilities, and the accumulation of 
nanomedicines at a tumor site solely relies on the passive accumulation via the “enhanced permeability and retention” (EPR) effect. 
Such a problem can be conquered by introducing tumor-targeting abilities to nanomedicines via surface chelating of nanomedicines/ 
nanocarriers by tumor-targeting antibodies (vide infra). 

Photoimmunotherapy (PIT) mediated super-enhanced permeability and retention (SUPR) effect can be one promising treatment to 
bring the dawn for such a complicated problem [279]. PIT is a novel cancer treatment which can cause specific cell killing and increase 
the vascular permeability rapidly by being exposed to 690 nm light through the conjugation of IR-700 photosensitizer and a targeted 
monoclonal antibody. By using various of imaging methods with labeled nanoparticles, the effect that remarkable increase in 
permeability for nanomedicines and the clear retention in the tumor site was visualized, and this effect was named as super-enhanced 
permeability and retention (SUPR). Sano et al. also reported that the best administration time to achieve the highest SUPR effect is 
immediate administration after the PIT. Compared with the conventional enhanced permeability and retention (EPR) effect of 
nanomedicines which can only moderately increase the tumor transmission of nanomedicines, Sano et al. found that PIT mediated 
SUPR effect can cause a 24-fold increase in the distribution of nanomedicines in the treatment of tumors compared with the control 
tumors [279]. In addition, the PIT mediated SUPR effect has no special requirements on the properties of nanomaterials. It can not only 
promote the transmission of non-targeted nanoparticles, such as PEGylated quantum dot (Qdot800; mean diameter 50 nm)[279], 
paramagnetic iron oxide (SPIO) (mean diameter ~ 200 nm) [280], ultra-small paramagnetic iron oxide contrast agent (USPIO, mean 
diameter 20 nm) [281], gadolinium labeled polyamidoamine dendrimer (mean diameter 10 nm) [282] in tumor bed, but it can also 
facilitate the transmission of other antibodies or antigen presenting cells towards tumor bed [283-285]. The key feature of the SUPR 
effect is the use of antibody to introduce the tumor-targeting ability. It was also experimentally observed that upon surface modifi-
cation with a tumor specific antibody or biomarkers-specific probe, the percentage of nanomaterial accumulation at a tumor site could 
be drastically increased to be within 10 ~ 20% of the total amounts of nanomaterials [318-322]. Moreover, with the gradual deepening 
of research in this field, together with several promising combination therapies emerging in this field, such as PIT combined with PIT 
[286-288], PIT combined with chemotherapy [289-292], PIT combined with immunotherapy [293-296], it has great potential to be 
widely used in tumor treatment in the future. 

3. Interactions of nanoparticles with TNBC 

3.1. Characteristic features of TNBC 

As a heterogeneous group of tumors, TNBC is characterized by aggressive behavior, high risk of distant tumor metastasis, recur-
rence and poor survival. Several promising surface receptors, genes, and corresponding ligands were reported as potential targets for 
the treatments of TNBC [297], including Breast Cancer type 1 and type 2 (BRCA1/2), Homologous Recombination Repair (HRR) genes 
involved in DNA-double strand break repair, and DNA homologous recombination repair, respectively. Poly ADP-ribose polymerase 
(PARP), Ataxia Telangiectasia Rad3 (ATR) and WEE1 inhibitors were also discovered as potential targeted therapy agents [298-301]. 
PD-L1 protein was involved in the tumor immune evasion process, making anti-[immune checkpoint inhibitors] antibodies possible as 
immunotherapy agents [302-304]. Phosphatidylinositol 3-kinase (PI3K) pathway was found to be a key regulator in cell proliferation, 
driving the discovery of PI3K and AKT inhibitors [305,306]. Besides, some other biomarkers were currently under investigation, like 
Glycoprotein non-metastatic b (GPNMB), Trophoblast cell-surface antigen 2 (Trop-2), LIV-1 (a zinc transporter protein downstream 
target of STAT3), CA6 (a biomarker selectively expressed on solid tumors), and so on [307-310]. These biomarkers may also provide 
possible targets for the treatment of TNBC using nanoparticles targeted therapies. 
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Table 7 
Reported targeted signaling pathways by nano drug delivery systems in cancer treatment.  

Entry Targeted 
signaling pathway 

Nanocarrier Research aim Key findings Ref. 

1 Methanol 
oxidation reaction 
pathway 

Pt-Ru bimetallic 
nanoparticle 

To explore manipulating the Surface 
Composition of Pt-Ru Bimetallic 
Nanoparticles to Control the Methanol 
Oxidation Reaction Pathway 

Using in situ Fourier transform infrared- 
diffuse reflection (FTIR) analysis, the 
researchers report that the methanol 
oxidation reaction (MOR) intermediates 
can be controlled by precisely tuning the 
location and content of Ru on the Pt-Ru 
alloy surface. 

[483] 

2 Lysosomal 
pathway of 
apoptosis 

DOX-loaded peptide 
dendritic copolymer 
nanoparticle 

To to investigate the performance and 
possible mechanisms of enzyme-sensitive 
mPEGylated dendron-GFLG-DOX conjugate 
based nanoparticles for blockading the 
MDR phenotype of MCF-7/ADR. 

1) mPEGylated dendron-GFLG-DOX 
conjugate based nanoparticles could 
induce cathepsin B in the cytoplasm and 
enhance lysosomal-mediated cell death 
compared to free DOX. 
2) mPEGylated dendron-GFLG-DOX 
conjugate based nanoparticles enhanced 
the drug’s penetration, toxicity, and 
growth inhibition compared to free DOX in 
the three-dimensional multicellular tumor 
spheroid model. 

[483] 

3 PD-1/PD-L1 
pathway 

Dual-locking nanoparticle 
(DLNP) 

To describe a dual-locking nanoparticle 
(DLNP) that can restrict CRISPR/Cas13a 
activation to tumor tissues. 

1) DLNP has a core–shell structure, in 
which the CRISPR/Cas13a system 
(plasmid DNA, pDNA) is encapsulated 
inside the core with a dual-responsive 
polymer layer. 
2) After carefully screening and optimizing 
the CRISPR RNA (crRNA) sequence that 
targets programmed death-ligand 1 (PD- 
L1), DLNP demonstrates the effective 
activation of T-cell-mediated antitumor 
immunity and the reshaping of 
immunosuppressive tumor 
microenvironment (TME) in B16F10- 
bearing mice, resulting in significantly 
enhanced antitumor effect and improved 
survival rate. 

[484] 

4 Nrf-2-Keap1 and 
NF-kB and 
mTOR/Maf-1/ 
PTEN pathway 

Solid lipid nano- 
formulation of 
astraxanthin 

To scrutinize the chemoprotective effect of 
astraxanthin against the 7,12-dimethylbenz 
(a)anthracene (DMBA)-induced breast 
cancer 

1) AX-SLN reduced the p-AKT which is 
accountable for the reduction in the NF-kB 
expression and also reduced the expression 
of Keap1 and NF-kB along with increasing 
the expression of HO-1 and Nrf-2. Further, 
2) AX-SLN significantly altered the mRNA 
of LXR (α,β), HMG-CoAR, PTEN, Maf1, 
PI3K, mTOR, Akt, FASN, and ACC1. 
3) AX-SLN inhibits the mammary gland 
carcinogenesis via Nrf-2-Keap1, NF-kB, 
and mTOR/Maf-1/PTEN pathway. 

[485] 

5 cGAS-STING 
pathway 

Radiotherapy-activated 
hafnium oxide 
nanoparticles 

To explore the impact of hafnium oxide 
nanoparticles (NBTXR3) activated by 
radiotherapy on cell death, DNA damage, 
and activation of the cGAS-STING pathway 

Compared to radiotherapy alone, NBTXR3 
activated by radiotherapy enhances cell 
destruction, DNA double strand breaks, 
micronuclei formation and cGAS-STING 
pathway activation in a human colorectal 
cancer model. 

[485] 

6 HER2 signaling 
pathway 

HER2-glycan-imprinted 
nanoparticles 

To introduce an effective strategy by 
blocking the HER2 signaling pathway in 
the treatment of HER2-positive breast 
cancer 

1) The nano molecularly imprinted 
polymer (nanoMIP), imprinted using 
HER2 N-glycans, could bind almost all 
HER2 glycans and suppress the 
dimerization of HER2 with other HER 
family members, blocking the downstream 
signaling pathways, thereby inhibiting 
HER2 + breast cancer growth. Invitro 
experiments demonstrated that the 
nanoMIPs specifically targeted HER2 +
cells and inhibited cell proliferation by 
30 %. 
2) Invivo experiments indicated that the 
mean tumor volume of the nanoMIP- 
treated group was only about half of that of 
the non-treated groups. 

[486] 

(continued on next page) 
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Table 7 (continued ) 

Entry Targeted 
signaling pathway 

Nanocarrier Research aim Key findings Ref. 

7 DNA repair 
pathway 

Demethoxycurcumin- 
loaded chitosan 
nanoparticle 

To understand whether 
Demethoxycurcumin-carbomethyl- 
hexanoyl chitosan (DMC-CHC) NPs 
efficiently potentiate cisplatin-induced 
apoptosis through downregulation of 
excision repair cross-complementary 1 
(ERCC1) in non-small cell lung carcinoma 
cells (NSCLC) 

1) A sulforhodamine B (SRB) assay 
indicated that DMC-CHC NPs significantly 
increased cisplatin-induced cytotoxicity by 
highly efficient intracellular delivery of 
the encapsulated DMC. 
2) A combination of DMC-CHC NPs and 
cisplatin significantly inhibited on-target 
cisplatin resistance protein, ERCC1, via the 
PI3K-Akt pathway. 
3) This combination treatment markedly 
increased the post-target cisplatin 
resistance pathway including bax, and 
cytochrome c expressions. 

[487] 

8 JAK2/STAT3 
signaling pathway 

Biodegradable 
Nanoparticles 

To develop a new delivery system for the 
co-delivery of Erlotinib (ELTN) and 
fedratinib (FDTN, a small-molecular, 
highly selective JAK2 inhibitor) 

1) Mechanistic study showed that FDTN 
notably down-regulated the expression 
levels of proteins in the JAK2/STAT3 
signaling pathway, including p-EGFR, p- 
JAK2, p-STAT3 and Survivin, therefore 
reversing the ELTN resistance. 
2) Synergistic anti-cancer effect was 
achieved by PEG-PLA NPs encapsulating 
both ELTN and FDTN in ELTN-resistant 
NSCLC tumors. Lower systemic side effect 
was noted for the co-delivery NPs 
compared to free drugs. 

[488] 

9 JNK apoptotic 
pathway 

Cerium Oxide 
Nanoparticles 

To describe how cerium oxide 
nanoparticles, sensitize pancreatic cancer 
to radiation therapy through oxidative 
activation of the JNK apoptotic pathway 

1) The increase in activation of apoptosis 
signaling kinase 1 (ASK1) activation 
following the co-treatment with cerium 
oxide nanoparticles (CONPs) followed by 
radiation therapy (RT) suggests that the 
increased JNK activation is the result of 
increased thioredoxin 1 (TRX1) oxidation. 
2) The ability of CONPs to sensitize 
pancreatic cancer cells to RT was 
mitigated when the TRX1 oxidation was 
prevented by mutagenesis of a cysteine 
residue or when the JNK activation was 
blocked by an inhibitor. 

[489] 

10 Fas apoptosis 
pathway 

Magnetic nanoparticle To investigate the expression of c-FLIP and 
caspase-8 and effect of monoclonal 
antibody CD95L (FasL) for apoptosis 
stimulation 

1) Caspase-8 apoptosis pathway was 
activated on transfected cells. 
2) Magnetic nanoparticle-mediated gene 
transfer is a successful non-viral method 
for transfection, and it does not affect the 
expression of other cell proteins. 
3) The raised c-FLIP concentration in 
cytosol inhibits apoptosis. Transfection of 
CD95-GFP-tagged pDNA significantly 
increases apoptosis by activating caspase-8 
pathway. 

[490] 

11 EGFR/ERK 
pathway 

Paclitaxel nanoparticles 
co-delivered with 
microRNA-7 

To sensitize Paclitaxel (PTX) chemotherapy 
for ovarian cancer 

1) The resulting PTX/miR-7 nanoparticles 
(P/MNPs) protect miRNA from 
degradation, possess a sequential and 
controlled release of drugs, improve the 
transfection efficiency of miRNA, decrease 
the half-maximal inhibitory concentration 
of PTX, and increase the apoptosis of 
ovarian cancer cells. 
2) The chemotherapeutic efficacy of PTX is 
prominently enhanced in vitro and in vivo 
via the inhibition of PTX-induced EGFR/ 
ERK pathway activation by miR-7. 

[491] 

12 P53/PRC1 
pathway 

Chitosan-coated 
doxorubicin nanoparticles 

To evaluate the effect of chitosan coated 
doxorubicin nano-particles drug delivery 
system in liver cancer 

1) The FA-CS-DOX nanoparticles were 
irregular and spherical particles around 
30–40 nm, with uniform size and no 
adhesion. 
2) No significant difference was noted in 
doxorubicin release rate between CS-DOX 
and FA-CS-DOX. 

[492] 

(continued on next page) 
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3.2. General mechanisms and signal pathways involved in the interactions of nanoparticles with TNBC 

The application of nanomaterials in disease diagnosis and treatment covers co-delivery of drugs and genes, imaging and diagnosis, 
detection of biomacromolecule, comprehensive treatment of tumor, etc.[311,312]. Nanomaterials having sizes in the range of 1 ~ 100 
nm show unique physical and chemical properties. Many metal nanoparticles have been shown to be able to absorb and convert ul-
trasonic wave, electromagnetic wave, and near-infrared light to thermal heat or chemical excitation energy, and exert hyperthermia or 
generate ROS for killing cancer cells [313]. Nanoparticle-based nanocarriers can realize multi-functions simultaneously, including 
controllable targeted drug delivery, sustained release of payload drugs, diagnostic imaging and therapeutic photothermal ablation 
[314-317]. 

In the cancer treatment, nano delivery systems have been reported to directly deliver doxorubicin (DOX), docetaxel (docetaxel), 
cyclophosphamide, 5-fluorouracil and cisplatin to tumor cells. Furthermore, nano delivery systems can increase the drug uptake by 
tumor cells via targeted drug delivery, and also accurately target at tumor tissues through overexpressed biomarker receptors on tumor 
cellular membrane (such as folate receptor, transferrin receptor, CD44 transmembrane proteins, etc.). In addition, the photothermal 
and photodynamic therapeutic effects mediated by metal nanoparticle nanocarriers themselves, such as graphene nanocomposites, 
gold nanoparticles, Fe3O4 nanoparticles and polymer nanocomposites, provide additional means to kill tumor cells and tumor stem 
cells. As for the specific process, the nanocarriers that reside between and within tumor cells, could absorb incident near-infrared light 
and convert it into heat energy or ROS locally to kill tumor cells [318-326]. Meanwhile, it can mediate long-lasting and controlled 
release of high-dose chemotherapeutic drugs to effectively inhibit and kill tumor cells [327]. 

The main targeted signaling pathways of nano drug delivery system include methanol oxidation reaction pathway, lysosomal 
pathway of apoptosis, PD-1/PD-L1 pathway, Nrf-2-Keap1 and NF-kB and mTOR/Maf-1/PTEN pathway, cGAS-STING pathway, HER2 
signaling pathway, DNA repair pathway, JAK2/STAT3 signaling pathway, JNK apoptotic pathway, Fas apoptosis pathway, EGFR/ERK 
pathway, P53/PRC1 pathway, and EGFR/PI3K/Akt-mediated pathway. Studies regarding targeted signaling pathways involved in 
nano drug delivery to cancers were summarized in Table 7 in detail [324,328-339]. 

3.3. Nano-therapeutic modalities developed for treating TNBC 

3.3.1. Photothermal therapy (PTT) 
Many metal nanoparticles have been shown to be able to absorb and convert near-infrared light to heat, which can be utilized to 

trigger release of payload drugs as well as exert local hyperthermia or generation of ROS to killing cancer cells [340-344]. Normal 
tissue around tumor has less accumulation of nanocarriers and thus suffer less damages under near-infrared light irradiation, which 
significantly improves the safety and effectiveness of photothermal and photodynamic therapies. Due to their strong localized surface 
plasmon resonance (LSPR) absorption, metal nanoparticles could absorb visible-near infrared light very efficiently and transform 
photon energy to heat and local hyperthermia with temperatures beyond 42 ℃ to kill tumor cells. In addition, temperature sensitive 
liposomes (LTSL) will release payload DOX above 42 ◦C to exert chemotherapy effect on killing tumor cells. According to the fluo-
rescence confocal Z-stack imaging and transmission electron microscopy, the uptake of multifunctional gold nanoparticles (MGN) by 
TNBC cells was increased significantly. Furthermore, cell viability test and fluorescence cell imaging results indicated that as compared 
to free DOX and single DOX loaded liposomes, MGN-DOX-LTSL has superior therapeutic effect on killing tumor cells. It was worth 
noting that even at low concentration (0.5 mg⋅L-1) of DOX, MGN-DOX-LTSL causes a higher percentage of cancer cell deaths (33%) 
than free DOX (17%). MGN-DOX-LTSL integrates the photothermal effect from MGN and delivery of chemotherapeutic drugs from 
LTSL to maximize the cytotoxicity and achieve complete eradication of invasive breast cancer stem cells [345]. 

Table 7 (continued ) 

Entry Targeted 
signaling pathway 

Nanocarrier Research aim Key findings Ref. 

3) FA-CS-DOX nanoparticles showed 
stronger cytotoxicity than CS-DOX. 
4) FA-CS-DOX nanoparticles promoted the 
apoptosis and arrested cell cycle at G2/M 
phase, and they up-regulated p53, 
inhibiting cell survival through p53/PRC1 
pathway. 

13 EGFR/PI3K/Akt- 
mediated 
pathway 

Gold nanoparticles- 
conjugated quercetin 

To evaluate the effects of gold 
nanoparticles-conjugated quercetin 
(AuNPs-Qu-5) in MCF-7 and MDA-MB-231 
breast cancer cell lines 

1) The pro-apoptotic proteins (Bax, 
Caspase-3) were found to be up regulated 
and anti-apoptotic protein (Bcl-2) was 
down regulated on treatment with AuNPs- 
Qu-5. 
2) AuNPs-Qu-5 treatment inhibited the 
EGFR and its downstream signaling 
molecules PI3K/Akt/mTOR/GSK-3β. 
3) Administration of AuNPs-Qu-5 in breast 
cancer cell lines curtails cell proliferation 
through induction of apoptosis and also 
suppresses EGFR signaling. 

[493]  
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Different nanomaterials have very different properties. Graphene quantum dot (GQD)-based nanomaterials are environmentally 
friendly without containing highly toxic heavy metals. Due to its chemical structures, it is easy to realize surface functionalization of 
GQDs on the basis of its C=C double bonds. In addition, GQD has unique optical properties. Upon photo excitation, GQDs are able to 
absorb and convert photon energy to heat, emit luminescence in the NIR region for tumor bioimaging, and sensitize formation of 
singlet oxygen to exert photodynamic therapy effect on killing cancer cells [346]. Hollow mesoporous silica nanoparticles (HMSN) 
could be coated onto GQDs to form GQD@HMSN-PEG by poly(ethylene glycol) (PEG) modification. The composite nano drug delivery 
system could exert simultaneously multi-functions, including bioimaging, photothermal therapy effect and photodynamic therapy 
effects on killing cancer cells. Meanwhile, GQD@HMSN-PEG has high DOX drug loading rate, longer tumor retention time and better 
curative effect in the treatment of TNBC [347]. 

Binding of integrin α antibody to PEGylated nano-micelles could promote the internalization of the composite micelles by TNBC 
cancer cells. For example, the metastatic migration of drug-resistant MDA-MB-231 TNBC and 4T1 cancer cells was delayed after 24 h of 
treatment, while the mitochondrial membrane potentials of these MDA-MB-231 TNBC and 4T1 cancer cells was significantly reduced 
under high temperature. In the 4T1 spontaneous metastasis model, intratumoral nano-micelle administration results in anti-tumor and 
fibrogenic blocking effects [331]. In another report, DOX@HAPPγ composed of hyaluronic acid (HA), polypyrrole (PPγ) nanoparticles 
and DOX was used for bioimaging and treatment of TNBC. DOX@HAPPγ has been reported to have multi-functions, including fluo-
rescence imaging, stimulator-induced response for drug release, and photothermal-induced heating, visual tracking of treatment 
process, high penetration of tumor tissue, etc [348]. The nano-vesicle composed of a cell membrane shell and a composed methylene 
blue-cisplatin-gelatin nanogel core, can exert contrast-enhanced photoacoustic tumor imaging, generation of photothermal hyper-
thermia, and luminescence imaging under laser irradiation. Such a composite nano-vesicle was demonstrated to be able to release of 
methylene blue and anti-cancer drug cisplatin, effectively kill 4 T1 cells, and shrink the primary tumor, achieving an inhibition rate of 
lung metastasis of up to 97% without having obvious dark toxicity to animals [349]. 

Lip (PTQ/GA/AIPH) is a second near infrared (NIR-II) light excitation multimodal phototheranostics nanomedicine formed by 
integrating the targeting aptamer, azo compound, HSP inhibitor, and semiconducting polymer. It can provide dual-modal imaging 
(photoacoustic and NIR-II fluorescence) and NIR-II PTT, producing cytotoxic free radicals and resulting in oxygen-irrelevant photonic 
thermodynamic therapy effects. With little adverse effects, this delivery system has promising potential of accurate diagnosis and 
effective inhibition of deep TNBC lesion [350]. By combining miR-34a and photoresponsive gold nanoshells (NS), miR-34a/NS was 
designed for releasing tethered miR-34a through excitation with either nanosecond pulsed near-infrared light or continuous wave. This 
system showed promising efficacy of suppressing the proliferation, viability, and migration of TNBC cells by precise gene regulation 
[351,352]. Besides, Bumpy Au triangular nanoprisms (BATrisms) has the advantages of high cell penetration, absorption peak within 
NIR region, increased surface area, and enhanced photothermal conversion efficiency. By integrating BATrisms and LK peptides 
(leucine and lysine rich cell-penetrating peptides), their cellular uptake efficiency has been largely developed. In TNBC xenograft mice 
model, LK-BATrisms showed a significant anti-tumor efficacy even under a very small dose and very low laser power (2.5 μg Au and 
808 nm, 0.25 W/cm2) [353]. 

3.3.2. Gene therapy 
Gene therapy is an important modality for the treatment of TNBC. Small interfering RNA (siRNA) is a double stranded RNA 

composed of 20–25 nucleotides, which precisely participate in specific RNA interference to regulate the expression of target genes. 
GNR@LPMO is composed of mesoporous organosilica-coated gold nanorod (GNR@LPMO), which is characterized by uniform size of 
175 nm, large pore size on the silica shell, high photothermal conversion efficiency and good biocompatibility. As compared to 
traditional liposomes and GNR, GNR@LPMO has higher siRNA loading capacity. Ni et al. reported in their study that functional siRNA 
could be effectively delivered to TNBC cells by GNR@LPMO, which induces tumor cell apoptosis by knockout of polo-likekinase1 
(PLK1) [354]. By combining effective gene transfer with photothermal ablation, GNR@LPMO could induce tumor inhibition rate 
15 times higher than that of the single treatment mode, and enhance the killing effect on both drug-resistant tumor cells and tumor 
stem cells. siRNA interference is an optimal practice to knock down gene expression and for studying protein function in various cell 
types. By alternately depositing siRNA and poly-L-arginine on nanoparticles to form layer-by-layer films, a single bilayer on the surface 
of nanoparticles could effectively load up to 3,500 siRNA molecules [355]. The resulting nanoparticles exhibit an extended serum half- 
life of 28 h. Moreover, one dose of intravenous drug administration could significantly reduce the target gene expression in the tumors 
by almost 80%. By generating siRNA-loaded film on top of a DOX-loaded liposome, a combined chemo-gene therapy could be realized 
with effective inhibition of the expression of the multidrug resistance protein 1. In in-vivo experiments, it was demonstrated that the 
tumor volume was suppressed by 87.5% and cancer cell counts decreased dramatically after treatment with the siRNA-polymer NP 
delivery system [356]. 

MicroRNAs (miRNAs) are short noncoding RNAs that act as a regulator for the expression of multiple genes and are themselves a 
therapeutic target. Using the three-way junction motifs of thermo-kinetics and chemical stability as scaffolds, a RNA aptamer able to 
bind to CD133 receptor and a locked nucleic acid sequence, was used to inhibit the expression of miRNA-21 in cancer cells. Functional 
analysis shows that the use of a RNA aptamer is able to inhibit both the migration of cancer cells and the expression of miRNA-21, while 
the expressions of downstream tumor gene suppressors PTEN and pDD4 were up-regulated [357]. Another research indicates that both 
the miRNA-205 and miRNA-34a have a significant inhibitory effect on the proliferation of TNBC cells, in which the miRNA-205 could 
negatively regulate the expression of epithelial mesenchymal transitions (EMT) related transcription factor ZEB1, and down-regulates 
the HER-3 expression, thus affecting the tumor development of HER-3-positive cells. Simultaneously, inhibition of TNBC cell cycle 
progression, proliferation and tumor growth could be realized by using targeting factors such as E2F1, a main regulator of cell cycle 
progression [358]. By using metal organic framework (MOF) nanoparticles (ZIF-8) as nanocarriers for combined gene/chemodynamic 
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therapies, the miR-34a-m@ZIF-8 complex demonstrated excellent efficacy in inhibiting tumor growth in a TNBC mice model via 
enhanced cell uptake and lysosomal stimuli-controlled release of miRNA, leading to an obvious decrease in BCL-2 expression and an 
enhancement of cancer cell apoptosis [359]. 

In addition to inhibition of proliferation of TNBC cells, nanocarriers containing the miRNA-34a could also exert an important role in 
inhibiting cancer cell migration. It was suggested that miRNA-34a might further inhibit the growth and the migration of breast cancer 
cells by down-regulation of the expression of Bcl-2 gene and the silencing information regulator 1 [360]. 

Coating the negatively charged nanocarriers with positively charged poly(lysine) and miRNA-34a alternately may help the 
nanocomposite to enter cancer cells and protect the payload miRNA-34a. The uptake of the nanocomposite particles by MDA-MB-231 
TNBC cells was detected and confirmed by confocal microscopy, Western blotting, and EdU cell proliferation flow cytometry. Ac-
cording to these results, the nano delivery system with miRNA-34a could inhibit the expression of SIRT1 and Bcl-2 with inhibition rates 
of (46 ± 3) % and (35 ± 3) %, respectively. Inhibition of the expression of SIRT1 and Bcl-2 could reduce the proliferation rate of TNBC 
tumor cells by 33% [361]. Meanwhile, the gene expression profile analysis of miRNA microarray in TNBC patients showed that the 
miRNA-374a-5p was up-regulated. Functional studies in vitro and in vivo showed that up-regulation of miR-374a-5p could promote 
tumor progression in TNBC [362]. miRNA-374a-5p could directly target at arrb1, of which the expression was specifically down- 
regulated in TNBC patients. The overexpression of arrb1 could suppress the growth and migration of tumor necrosis cells, and its 
expression level was negatively correlated with the histological grade of breast cancer, but positively correlated with the survival of 
tumor necrosis cells. Moreover, the up-regulated expression of arrb1 could activate adenine monophosphate as well as protein kinase 
in TNBC cells, which was related to the expression of miR-374a-5p [363]. Furthermore, HA-PEI-PLGA, a HA nanocomposite being 
modified by poly(ethylene imine) (PEI) and poly(lactic acid) (PLGA), was loaded with DOX and miRNA-52-3P. The composite HA-PEI- 
PLGA-DOX nanoparticle have an average particle size of 131.7 nm. It had a high drug encapsulation rate, which could prevent the 
enzymatic degradation of miRNA-52-3P in serum. The in vitro cellular experiments revealed that the HA-PEI-PLGA-DOX nanoparticles 
could increase the uptake of DOX by MDA-MB-231 TNBC cells, as compared to uptake of free DOX. In addition, miRNA-52-3P loaded in 
the HA-PEI-PLGA nanoparticle could promote the apoptosis of TNBC cells by targeting at the tumor suppressor gene p53 and apoptosis 
inhibitory factor Survivin [364]. 

3.3.3. Immunotherapy enhanced by nanoparticle delivery system in TNBC treatment 

3.3.3.1. Mechanisms of immunotherapy enhanced by nano delivery system. Nanoparticles have been widely used as nanocarriers in 
tumor immunotherapy, including the delivery of vaccines, antibodies, and immune-modulators to specific immune cells, to improve 
the tumor inhibition efficacies [365-367]. The cyto-biological and molecular biological mechanisms responsible for the immuno-
therapy enhancement by nanoparticle delivery system in TNBC were summarized in the Table 8 [368-378]. 

Based on previous studies, lung metastasis of breast cancer is the main cause responsible for deaths of TNBC patients. Anti- 
metastasis is one of the major challenges in TNBC treatment. Activation of immune system is of great significance in the treatment 
of metastatic cancers, especially in the TNBC. DOX@HIMSN, a nano drug delivery system composed of mesoporous silica nanoparticles 
(HIMSN) and payload drug DOX, was constructed for the treatment of TNBC. It was found that DOX@HIMSN could promote the 
maturation of dendritic cells and the release of anti-tumor cytokines, improve the cytotoxicity of tumor cells, and stimulate the anti- 
TNBC immune response [379]. 

It was reported that Arg-Gly-Asp (RGD) peptide could be coupled with DOX and mitomycin C via amide bond linkage to form a 
nano drug delivery system RGD-PLN. The RGD-PLN nanoparticle could induce morphological changes of tumor cells in in vitro ex-
periments, enhance the toxicity to tumor cells, target at tumor mesenchymal blood vessels and solid cancer cells, and show high 
concentration aggregation in lung metastasis. From bioimaging experiments, it was observed that intravenous administration of RGD- 
PLN at a dose of 10 mg⋅kg− 1 could dramatically decrease the number of pulmonary metastases by 31%, which is significantly higher 
than 4.7% observed in the control group. Similarly, the area index of pulmonary metastases was reduced by 4.0% upon intravenous 
administration of RGD-PLN at a dose of 10 mg⋅kg− 1, which is slightly higher than 2.4% observed in the control group. The results 
unambiguously showed that RGD-PLN nanoparticle could significantly inhibit pulmonary metastasis and prolong the survival time of 
the host [380]. 

There was an increase in the expression of interleukin 6 (IL-6) in TNBC as compared to that in healthy breast tissue. Confocal 
microscopic images showed that DOX-HA conjugated super-paramagnetic Fe2O3 nanoparticles could deliver higher dose of DOX to 
TNBC tumor cells than administration of DOX in its free from. In addition, the morphological changes observed under electron mi-
croscope showed a significant effect of enhanced apoptosis. ELISA results showed that the expression of IL-6 and NF-κB decreased 
significantly upon administration of DOX-HA-Fe2O3 NPs [381]. In addition, 4 T1 mouse breast cancer cells were implanted into the 
lateral part of BALB/c female mice in another research, followed by different treatments with either tumor necrosis factor-α (TNF-α) 
alone, or DOX alone, or combination of both. Experimental results showed that nanomicelles loaded with DOX and TNF-α could 
significantly increase the amount of chemotherapeutic drugs uptake by 4 T1 tumor cells in mice [382]. Many research reports have 
demonstrated that nanoparticle drug delivery systems could simultaneously load and deliver cytokines and chemotherapeutic drugs to 
activate the immune system and achieve synergistic anti-tumor effects. Moreover, tumor growth in tumor-bearing mice could be 
inhibited noticeably by intravenous injection of nanovesicles loaded with both cytokine IL-2 and DOX. Interferon γ could significantly 
inhibit the growth and metastasis of TNBC primary tumor, further promote the maturation of dendritic cells, stimulate the infiltration 
and activation of CD8 + T lymphocytes and natural killer cells, increase the recruitment of CD45 + immune cells and Ly6G + neu-
trophils, and effectively inhibit TNBC tumor cells[383]. Unique modes of immune-activation by nanomedicines were schematically 
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Table 8 
Cyto-biological and molecular biological mechanisms of immunotherapy enhanced by nano delivery system in TNBC treatment.  

Mechanism Research 
level 

Key research findings Ref. 

Promoting immunogenic cancer cell 
death 

Cellular 
level 

1) Nanomedicine formulations are an attractive modality to promote immune genic cell death 
(ICD) because they can concentrate cytotoxic agents in tumor cells. 
2) Nanomaterials can be designed to directly interact with external energy sources, allowing 
amplification of ICD induced by treatments such as radiotherapy and magnetic hyperthermia. 
3) ZnP@pyro PDT treatment (Zn-pyrophosphate nanoparticles loaded with the photosensitizer 
pyrolipid photodynamic therapy) significantly inhibited 4 T1 tumor growth with a 68% 
reduction in tumor volume and a 75% reduction in tumor weight compared to the PBS control 
group. 

[494] 

Ligand presentation to immune cells Cellular 
level 

1) Many key immunoregulatory receptors engagements, especially costimulatory signals 
provided to T cells and natural killer cells, occur at cell–cell junctions. Nanomedicines can 
present multiple ligands, either to co-engage multiple receptors on target immune cells or to 
engage multiple cell types simultaneously. 
2) Precise spatiotemporal codelivery of aPD1 and aOX40 using nanoparticles (NP) (dual 
immunotherapy nanoparticles, DINP) results in improved T-cell activation, enhanced 
therapeutic efficacy, and increased immunological memory. DINP elicits higher rates of T-cell 
activation in vitro than free antibodies. 
3) DINP demonstrated the highest response rate (100%) and significantly better than aOX40- 
NP plus free aPD1 in tumor inhibition. The survival curve showed that the tumor-free survival 
rate after DINPs treatment was 30%, compared to 10% after the treatment by aPD1-NP plus 
free aOX40 or by aOX40-NP plus free aPD1. 

[495] 

Linking therapeutics to immune cells Cellular 
level 

1) In an approach of linking supporting drugs to adoptively transferred cells, supporting drugs 
are encapsulated in or otherwise formulated into nanoparticles that are chemically attached to 
the plasma membrane of the donor cells. These nanoparticle ‘backpacks’ are designed to 
release the drug at a prescribed rate or under selected microenvironmental conditions. 
2) Cell conjugated nanoparticles have also been used to backpack lymphocytes with small 
molecule supporting drugs. This approach of backpacking T cells with cytokines has recently 
entered clinical trials for a variety of solid tumor types. 
3) Attaching nanoparticle formulations to immune cells substantially alters the biodistribution 
of the nanomedicine, providing greatly enhanced accumulation of particles in tumors when 
attached to tumor reactive T cells. 
4) The same cytokine dose loaded in cell-bound NPs elicited markedly amplified proliferation 
by Pmel-1 cells (81-fold higher peak photon count relative to unmodified Pmel-1 T-cells on day 
6, P < 0.0001). Cytokine NP-carrying T-cells displayed enhanced long-term persistence (14.8- 
fold and 4.7-fold higher photon counts than Pmel-1 T-cells alone at 16 and 30 days after T-cell 
infusion, respectively, P < 0.0001). 

[496] 

Targeting drugs to circulating 
lymphocytes 

Cellular 
level 

1) To use nanomaterials to directly target drugs to lymphocytes in vivo through chemically 
conjugated antibodies or other targeting moieties that will bind to target cell surface receptors, 
this strategy can be used to target either endogenous immune cells or adoptively transferred 
cells, but it may be particularly efficient in the case of adoptive cell therapy (ACT). 
2) Another approach to delivering nanomaterials to cells in the blood is to target compounds to 
lymph nodes, with the goal of engaging lymphocytes as they recirculate through these 
secondary lymphoid organs. Nanoparticles can efficiently pass from parenteral injection sites 
into lymphatic vessels, and hence to lymph nodes. 
3) The approach to target stimulation to CAR T cells was demonstrated, whereby an albumin- 
binding lipid tail was linked via a PEG spacer to a small molecule or peptide ligand for a CAR. 
This lipid–PEG–CAR ligand construct was efficiently shuttled to lymph nodes following 
parenteral injection and decorated the surfaces of macrophages and DCs through insertion of 
the lipid tail into antigen presenting cell plasma membranes. 
4) Boosting of CAR T cells by DCs coated with the CAR ligand led to enhanced CAR T cell 
expansion, increased effector functions and enhanced tumor rejection in several syngeneic 
mouse tumor models. 

[497] 

Intracellular delivery of danger 
signals and nucleic acids 

Molecular 
level 

1) Nanomaterials can serve as surrogates of natural viruses to promote access of nucleic acids 
and other drugs to the cytosol. In the setting of cancer immunotherapy, this is particularly of 
interest for delivering compounds to activate cytosolic danger sensor proteins or to deliver 
RNA or DNA that encodes immunomodulatory proteins. 
2) Another intriguing approach is the use of synthetic polymers that directly engage danger 
signal pathways. Immunostimulatory spherical nucleic acids (IS-LSNAs) comprised of RNA 
selective for toll-like receptors (TLRs) 7/8 are synthesized. 
3) IS-LSNAs potently activate TLR7/8 via NF-κВ signaling in reporter cell lines and in primary 
immune cells as evidenced by cytokine production and the upregulation of costimulatory 
receptors. These immune-stimulators are taken up by myeloid cells and antigen presenting 
cells more efficiently than free TLR ligands, leading to enhanced immune-stimulation. 
4) IS-LSNAs induced higher levels of these molecules (by 25 times for IL-6, 30 times for IL-10, 3 
times for IL-12p40, and 10 times for IP-10, and 20 times for TNFα) when compared to free 
RNA. 

[498] 

[327] 
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Table 8 (continued ) 

Mechanism Research 
level 

Key research findings Ref. 

Temporal control of immune- 
stimulation 

Molecular 
level 

1) Nanomedicine formulations can be designed to interact with external energy sources such as 
light or heat to permit precisely controlled timing of drug release. 
2) In the approach of near infrared light activatable nanoparticles complexed with TLR9 
agonist CpG containing DNA, photolabile DNA strands complementary to CpG DNA were 
linked to the surface of near infrared light sensitive upconversion nanoparticles. 
3) The immune device is composed of a rationally designed UV light-activatable 
immunostimulatory agent and upconversion nanoparticle, which acts as a transducer to shift 
the light sensitivity of the device to the NIR window. 
4) This device derived immune infiltration of tumors and enhanced survival of the mice, 
illustrating the potential of the remote-controlled immune device for triggering of 
immunoactivity at the right time and site. The TNF-α and IL-6 production elicited by PCpG/ 
UCs and NIR irradiation were still 3.3- and 6.0-fold higher than that elicited by nonirradiated 
PCpG/UCs, respectively. The live tumor cells in the groups treated with PCpG/UCs + NIR and 
CpG/UCs were significantly decreased (with a tumor cell density of 26.3 and 19.1%, 
respectively) in comparison with other groups. 

Altering pharmacokinetics of 
immunotherapy agents 

Molecular 
level 

1) Nanomedicine formulations are also being pursued as a means to allow safe systemic 
administration of innate immune stimulators such as TLR agonists, STING agonists and ligands 
for other danger sensors. 
2) Liposomal nanoparticle-delivered cGAMP (cGAMP-NP) activates STING more effectively 
than soluble cGAMP. Within the tumor microenvironment, cGAMP-NPs direct both mouse and 
human macrophages (M), reprograming from protumorigenic M2-like phenotype toward M1- 
like phenotype; enhance MHC and costimulatory molecule expression; reduce M2 biomarkers; 
increase IFN-γ-producing T cells; augment tumor apoptosis; and increase CD4 + and CD8 + T 
cell infiltration. 
3) Activated T cells are required for tumor suppression, as their depletion reduces antitumor 
activity. Importantly, cGAMP-NPs prevent the formation of secondary tumors, and a single 
dose is sufficient to inhibit TNBC. 
4) cGAMP-NP treatment significantly inhibited tumor growth, leading to 100% survival at day 
20 when compared with significant death among control mice receiving either blank-NP or 
soluble cGAMP. 

[499] 

Promoting immunotherapy retention 
in cancer tissues 

Tissue level 1) Nanoparticles can be physically trapped in the TME following injection because the 
interstitial space in tumors is filled by a collagen rich extracellular matrix. The collagen fibres 
form a meshwork with irregular spacings ranging from 20 to 130 nm that traps particles of a 
similar or larger size. 
2) Intratumoral injection of immune-stimuli chemically conjugated to liposomes 100–200 nm 
in diameter leads to their distribution through the local lesion and some accumulation in tumor 
draining lymph nodes, but no detectable dissemination into the blood. 
3) Such alterations in biodistribution have allowed the safe administration of combination 
treatments that were lethally toxic as free drugs, with concomitant enhancements in antitumor 
activity. 
4) Treated tumors were either completely cured (89%) or showed significantly delayed 
progression, while contralateral untreated tumors were also strongly inhibited, with 22% of 
dual-tumor-bearing animals achieving rejection of the distal simultaneously-established 
tumor. 

[500] 

Targeting lymphoid tissues Tissue level 1) Particles with sizes ranging from 5 to 50 nm injected into tissues are too large to efficiently 
enter the blood vasculature, and instead preferentially enter lymphatic vessels, and are thus 
targeted to downstream lymph node. 
2) TLR agonists conjugated to 30nmdiameter polymer nanoparticles injected intradermally 
near melanomas led to an accumulation of the TLR agonists in tumor draining lymph nodes. 
3) Activation of DCs in these sites and induction of T cell priming that slowed tumor 
progression and enhanced survival. 

[501] 

Targeting myeloid cells Systemic 
level 

1) An alternative to depleting suppressive myeloid cells is to reprogramme them to a 
phenotype that promotes antitumor immunity. Innate immunostimulants that mimic danger 
signals produced by pathogens induce proinflammatory cytokine production and polarize 
macrophages from an immunosuppressive state towards a tumoricidal phenotype. 
2) R848, an agonist of the toll-like receptors TLR7 and TLR8 identified in a morphometric- 
based screen, is a potent driver of the M1 phenotype in vitro and that R848-loaded 
β-cyclodextrin nanoparticles (CDNP-R848) lead to efficient drug delivery to tumor-associated 
macrophages in vivo. 
3) As a monotherapy, the administration of CDNP-R848 in multiple tumor models in mice 
altered the functional orientation of the tumor immune microenvironment towards an M1 
phenotype, leading to controlled tumor growth and protecting the animals against tumor 
rechallenge. When used in combination with the immune checkpoint inhibitor anti-PD-1, 
improved immunotherapy response rates were observed. 
4) Complete tumour regression was observed in 2/7 tumors, and animals cured in the course of 
treatment resisted secondary tumour challenge, further indicating that the treatment had 
triggered anti-tumour memory. 

[502] 
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shown in Fig. 7. 

3.3.3.2. Delivery of tumor vaccines by nanocarriers. Researchers have developed various nanoparticle delivery systems to stimulate or 
activate the immune system to fight against tumors. Tumor vaccines utilize tumor-associated antigen (TAA) to activate the human 
body’s immune system to response against tumor cells, which plays an important role in early prevention and treatment of cancers. At 
present, cervical cancer vaccine has been successfully marketed. In general, tumor vaccines are composed of TAA and adjuvants. As 
compared to direct injection, the delivery of TAA by nanocarriers can protect antigen from enzymatic degradation in serum, target the 
drug at dendritic cells (DCs) or T cells, and produce cross-presentation effect of antigens. As a result, the cytotoxic lymphocyte (CTL) is 
effectively stimulated to promote anti-tumor immunity [385,386]. 

DC is an important antigen presenting cell (APC) in vivo, and it is the key cell type that induces immune response. Zhuang, et al. 
[387] co-loaded the melanoma-specific antigen peptides TRP2180-188 and HGP10025-33 on the surface of zinc phosphate nano-
particles, and internally encapsulated the Toll-like receptor 4 agonist monophosphoryl lipid A (MPLA) as an adjuvant. DC targeting 
was achieved via surface modification of mannose. Both in vitro and in vivo experimental results showed that the co-presence of dual 
antigen peptides could stimulate a stronger immune response than a single antigen alone. The nano delivery system makes it possible 

Table 8 (continued ) 

Mechanism Research 
level 

Key research findings Ref. 

Targeting non-immune stromal cells Systemic 
level 

1) Polymer nanoparticles designed to dissolve rapidly under the slightly acidic conditions 
found in tumors allowed selective delivery of angiotensin receptor blockers to CAFs within the 
TME as measured by the levels of active drug in the tumor in comparison with treatment with 
the free drug. 
2) This nanomedicine therapy, when combined with checkpoint blockade, increased survival 
and reduced metastasis following primary tumor resection in multiple breast tumor models. 
Delivery of docetaxel to CAFs using these particles led to enhanced survival in models of breast. 
3) Acetylated carboxymethylcellulose nanoparticles were discovered to preferentially 
accumulate in α smooth muscle actin positive CAFs in breast and pancreatic tumors, mediated 
in part by opsonization of the particles with albumin and subsequent interaction with the 
albumin receptor SPARC (secreted protein acidic and rich in cysteine) expressed by these cells. 

[463]  

Fig. 7. Nanomedicines could promote unique modes of immuno-activation. (a) Nanomedicines can accumulate within tumor tissues via the 
enhanced permeation and retention (EPR) effect, concentrating the drug at tumor sites. (b) Nanoparticles could be designed to interact with external 
energy sources, such as ionizing or non-ionizing radiation or magnetic fields to enhance immunogenic cell death (ICD). (c) Nanomedicines allow co- 
delivery of therapeutic drugs with very different properties to tumor sites. (d) Multiple ligands could be arrayed on the surface of polymeric 
nanoparticles to enhance engagement of immune-stimulatory receptors. (e) Nanoparticles could be formulated to destabilize endosomal membranes 
and promote drug delivery into the cytosol. (f) Nanoparticles allow control of the kinetics of drug release, either preprogrammed through the 
particle chemistry or through responsiveness to an external stimulus, such as light or heat. Modified and reprinted from ref. [384]. Reproduction 
with permission from Springer Nature. Copyright © 2020, Springer Nature. 
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the targeted delivery at DC and the continuous release of antigens, leading to inhibition of the growth of melanoma. The prediction of 
new epitope by tumor exon sequencing technology makes it possible to produce individualized vaccines, which could be used for the 
synthesis of tumor specific antigen (TSA) for various tumors, and achieve precise treatment of tumors. Kuai, et al. [388] established a 
new nano-vaccine system for individualized neo-epitope vaccination. Phospholipids and apolipo-protein-like polypeptides were used 
to produce high-density lipoprotein like nano-disc. These nano-discs could be loaded with antigenic peptides and adjuvants to improve 
the efficiency of their delivery to lymphoid organs, achieve continuous antigen presentation of DC, produce a large number of CTL, and 
realize further specific recognition and killing of tumor cells. Researchers loaded the multi-epitope antigen peptide of sequenced 

Fig. 8. Preparation of the αHSP70p-CM-CaP nano vaccine, which enables the co-delivery of three components, B16OVA cells membrane proteins 
(CM), adjuvant CpG and an α-helix peptide modified HSP70p. (i) Preparation of the CpG-containing CaP core using a water-in-oil microemulsion 
method. (ii) Isolation of B16OVA cancer cells membrane proteins (CM) from the cultured B16OVA cells by detergent. (iii) Lipids and the CaP core 
were mixed and evaporated to form a thin film. (iv) The film was hydrated with αHSP70p- and CM- containing solution to form the αHSP70p-CM- 
CaP, which was further processed by centrifugation and purification. Modified and reprinted from ref. [393]. Reproduction with permission from 
Elsevier. Copyright © 2018, Elsevier Ltd. 
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melanoma on the nano-disc. In a mouse model, the immune checkpoint blocker, programmed cell death protein 1 (PD-1) antibody and 
cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) antibody, were used in combination with the vaccine to enhance the anti-TNBC 
tumor efficacy. Such a combined therapy eventually completely eliminates the TNBC tumor. Two studies published in Nature 
confirmed the possibility of the implementation of personalized vaccines and showed good safety in small-scale human trials, bringing 
positive clinical responses to high-risk melanoma patients. Among 13 patients, 8 cases showed no signs of recurrence within 23 months 
after the vaccination, and 5 cases with proliferation of cancer at the time of vaccination. 2 cases of them had tumor regression, and a 
case had complete remission after vaccination and using PD-1 antibody drug [389]. In another study, 4 of the 6 patients had no 
recurrence within 25 months after vaccination, and 2 patients with recurrent disease subsequently received PD-1 antibody drug for 
treatment, and the tumor was completely eliminated [390]. 

Some studies showed that adjuvants can greatly improve the immune activities of DC, lymphoid cells and macrophages to specific 
antigens. Cytosine-phosphate-guanine oligonucleotide (CpG)) is a classical immune adjuvant. Duan, et al. [391] prepared a pH 
responsive nano-delivery system, which could be degraded to release antigens and adjuvants CpG, TAA and CpG in the acidic envi-
ronments of cytoplasm and inclusion body. This could enhance the cross-presentation of antigens, and stimulate the activation of T 
cells and the generation of cytokines. Kang, et al [392] designed a nano-delivery system that could deliver TAA to natural killer cell 
(NK cell) and APC. The process of synthesis of the nano-delivery system was shown in Fig. 8. In the preparation process, the TAA, 
aHSP70p protein and adjuvant CpG of melanoma were wrapped inside the calcium phosphate nucleus of a nano delivery system. The 
calcium nucleus was coated with bilayer lipid membranes. Effective lymphocyte transfer and multi-epitope T cell reaction could be 
observed by injecting the nanoparticles into mice. The composite nano delivery system could also induce the amplification of CD8 + T 
cells and NKG2D + NK cell subsets. The nanoparticles also had synergistic effect on the antigen presentation and maturation of bone 
marrow derived DC. 

3.3.3.3. Delivery of immune antibodies by nanocarriers. Immunotherapy based on immune antibodies has become an effective modality 
for anti-cancer treatment. Monoclonal antibody is provided with strong specific binding ability toward a specific antigen, which could 
reduce the adverse reactions at non-targeted sites, and improve the efficacy of immunotherapy of tumors. Immunotherapy, however, 
suffers from many limitations, such as poor pharmacokinetics, limited tumor penetrability, and difficulty to cross the biological 
barriers [394,395]. To avoid occurrence of these problems, the antibody could be wrapped in a nanocarrier and delivered directly to 
tumor sites. Kim, et al. [396] used polyion complex micelle to load and deliver an antibody to the cytoplasm. Their results showed that 
the antibody delivered by nano-micelles could avoid lysosome degradation, and thus enhance the recognition ability of APC for 
intracellular antigen. 

As a tumor necrosis factor receptor, OX40 monoclonal antibody showed good antitumor effect in an animal model. However, it did 
not show similar antitumor effect in a phase I clinical trial [397]. Chen, et al. [398] constructed biodegradable PLGA nanoparticles to 
carry the OX40 monoclonal antibody. Their results showed that the PLGA-OX40 nanoparticles could better induce the proliferation of 
CTL, and enhance the specific cytotoxicity of tumor antigen and the production of cytokines as compared to administration of free anti- 
OX40 antibody. It was confirmed that the delivery of OX40 monoclonal antibody by PLGA nanoparticles could produce a prolonged, 
enhanced antigenic specificity immune response. In addition to the use of nanocarriers for the delivery of antibody, nanobody (Nb) has 
also become a hot research topic in recent years. Traditional antibody plays an important role in the tumor treatment, but the tumor 
penetration ability is poor. Sometimes, it is difficult for a large-sized antibody to reach a specific target site. Nb contains only a variable 
region of antibody heavy chains, and thus the relative molecular mass is small. It is relatively easier for Nb to infiltrate into some cancer 
tissues, where it is otherwise difficult for large antibody molecules to reach. In addition to directly using Nb as immune blockers in 
tumor treatment, it could also be delivered by using nano-delivery systems [399]. van Driel, et al. [400] co-loaded epidermal growth 
factor receptor’s Nb and a photosensitizer in the same nanocarrier for photodynamic therapeutic treatment of head and neck cancer, 
and achieved a very good outcome. 

3.3.3.4. Delivery of interfering genes by nanocarriers. The delivery of small interfering RNA (siRNA) by nanocarriers provides a method 
for intracellular antigen synthesis, which has great application values in antitumor immunotherapy [401,402]. Kranz, et al. [403] 
developed a RNA-lipoplex (LPX) complex, loaded with siRNA of encoding tumor antigens, by controlling the positive and negative 
charge ratio, to control the spleen targeting and transfection efficiencies of RNA. The fatty-acid layer in the outer layer of liposomes 
protects RNA from enzymatic degradation by ribonuclease. The RNA-LPX nanocomposite could achieve targeted delivery of RNA to 
DCs. The RNA-LPX could achieve effective uptake of RNA by DC and macrophages, stimulate high expression level of coding antigens, 
and induce plasmocyte-like DC and macrophages to release interferon α (IFNα). It was also found that the RNA-LPX could promote 
synthesis of new antigens and induce strong responses of memory T cells and effective T cells. Li, et al. [404] constructed a cationic 
nanoparticle, NPsiCTLA-4, for the delivery of CTLA-4 siRNA, which could effectively transfer siRNA to T cells in in vitro experiments, 
and decrease the level of CTLA-4 mRNA and protein after activation of T cells. In vivo experiments showed that the nanoparticles could 
introduce CTLA-4 siRNA into CD4 + and CD8 + T cell subsets at tumor sites, increase the proportion of anti-tumor CD8 + T cells, and 
decrease the proportion of inhibitory regulatory T cell (Treg) in tumor infiltrating lymphocytes (TIL). NPsiCTLA-4 could effectively 
inhibit the tumor growth, and prolong the average survival lifespan of mice bearing melanoma. 

Tumor-associated macrophage (TAM) is the ideal target for tumor immunotherapy [405]. The M2 macrophage is a leukocyte with 
large quantity in tumor microenvironments; and it can induce immunosuppression through multiple mechanisms. Qian, et al. [406] 
constructed a polypeptide lipid nanoparticle (M2NP) for targeting at the M2-like TAM to resolve the problem of the immunosup-
pressive effect induced by M2 cells. The M2NP could load simultaneously both polypeptides for targeting at M2 cells and siRNA that 
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interferes with the expression of colony stimulating factor 1 receptor. As compared to the control group, the M2NP loaded with siRNA 
could eliminate the M2-like TAM by 52%, reduce 87% of the tumor size, and prolong the average survival lifespan of mice (Fig. 9). In 
addition, the molecular targeting strategy could also inhibit the production of immunosuppressive factor interleukin (IL-10) and 
transforming growth factor β, increase the expressions of immunomodulatory factors IL-12 and IFNγ, and increase CD8 + T cell 
infiltration in tumor microenvironments by 2.9 times. The M2NP carrying siRNA could also lower the expressions of T cell immu-
noglobulin, mucin protein 3 (Tim-3) and CD8 + T cell, and stimulate the secretion of IFN γ by 6.2 times. 

3.3.3.5. Nanocarriers rebuilding tumor immune microenvironments. Tumor microenvironments have many unique physiological char-
acteristics, including hypoxia, micro-acidity, vascular irregularity, etc. In addition, tumor microenvironment can produce immuno-
suppressive micro-domains by releasing cytokine mediators and aggregating immunosuppressive cells, which is an important cause 
leading to chemodrug tolerance and poor prognosis [408]. Therefore, rebuilding the tumor immunosuppressive microenvironments is 
of great importance to the success of tumor immunotherapy. Some studies have showed that a low dose of paclitaxel can inhibit Treg 
activity, and enhance cytokine’s anti-tumor effect [409]. Song, et al. [410] constructed a nanogel coated with erythrocyte membrane 
which is sensitive to tumor microenvironments. The nanogel was loaded with chemotherapy drug paclitaxel and cytokine IL-2, 
wherein the paclitaxel had immune-modulatory effect. Paclitaxel in a low dose could regulate immune activity, activate DC, reduce 
the number of Treg, and further enhance the immune effect and IL-2 induced cell activation. This new nanogel has good tumor tar-
geting and micro-acid environmental response abilities, could enhance the tumor penetration of chemodrugs, and mediate combined 
immunotherapy and chemotherapy with synergistic anti-tumor effect. Chiang, et al. [411] designed a method to co-load immune 
checkpoint blocking inhibitor PD-L1 antibody and T cell activator CD3, CD28 antibodies onto iron oxide nanoparticles (IO@FuDex3). 
The IO@FuDex3 could effectively enhance the proliferation of TIL, and rebuild the immunosuppressive tumor microenvironment. 
Furthermore, it can effectively target at tumor cells under the guidance of a magnetic field (by an external magnet), achieve accurate 
anti-tumor treatment to the greatest extent, and reduce the adverse effects on normal cells. Kosmides et al. [412] prepared an 
“immuno-switch particle”, which were loaded with both PD-L1 antibody and 4-1BB antibody. 4-1BB is a costimulatory molecule of T 
cell, and can stimulate the activation and proliferation of T cells after combining with its ligands. The nano delivery system not only 
could block the immunosuppressive PD-L1 pathway of NK cells, but also could activate the 4-1BB costimulatory pathway in CD8 + T 
cells. Their results showed that the nano “immune-switch” nanoparticles could exert significant antitumor effects on mouse melanoma 

Fig. 9. Immuno-switch nanoparticles could inhibit tumor growth in vivo. (a) Schematic time line in the in vivo mice model. C57BL/6 mice (n = 4 
isotype, n = 8 all other groups) were injected with 1 × 106 B16-SIY cancer cells subcutaneously (SC) on day 0. 2C CD8 cells were isolated on day 0, 
stimulated with anti-CD3/anti-CD28 expander beads on days 0 and 4 as previously described, and isolated from the beads and injected intrave-
nously (IV) on day 8. Nanoparticle and antibody treatments were given intratumorally (IT) on days 8, 11, and 15, respectively. (b) Tumor growth 
curves show that immune-switch treatment could significantly delay the tumor growth as compared to no treatment and all other controls. Black 
arrows indicate the time (day) points for treatment. Significance of data was evaluated by two-way ANOVA with Bonferroni post-test (p < 0.001). 
(c) Immuno-switch treatment could significantly extend the average survival lifespans of treated mice groups as compared to the control group 
without treatment. Significance of data was determined by log-rank test (p = 0.0002). Combined results from two independent experiments are 
shown with ***p < 0.001. Modified and reprinted from ref. [407]. Reproduction with permission from American Chemical Society open access. 
Copyright © 2017, American Chemical Society. 
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and colon cancer models, and also relieved the immunosuppressive state of tumor microenvironments. 

3.3.4. Nanoparticles for targeting at breast cancer stem cells (BCSCs) 
Emerging evidences suggested that breast cancer stem cells (BCSCs) having tumor-initiation and self-renewal abilities are able to 

create chemotherapy resistance, and promote tumor metastasis and recurrence. BCSCs have unique growth and recovery abilities, 
including self-renewal ability, differentiation potential, and resistance to most of anti-cancer treatments, such as radiotherapy, 
chemotherapy, etc. [413,414]. Self-renewal ability is essential for the maintenance and propagation of BCSCs. To escape from strict 
regulation, BCSCs rely on key dysregulated SRSPs, such as signal transducer and activator of transcription (STAT) signaling, Proto- 
oncogene tyrosine-protein kinase Src (SRC) signaling, and Wnt/β-catenin signaling, which lead to extensive cell propagation [415]. 
This aberrantly activated self-renewal ability of CSCs is considered as an early event in the tumorigenesis, which enables these cancer 
stem cells to resist against conventional chemotherapeutic agents, and results in tumor recurrence [416]. 

TNBC tumors have been consistently reported to display cancer stem cell (CSC) signatures at functional, molecular, and tran-
scriptional levels. In recent decades, CSCs-targeting strategies have achieved good therapeutic effects on anti-tumor treatment of TNBC 
in multiple preclinical studies. Some of these strategies are currently being evaluated in clinical trials. In general, their clinical ap-
plications are not successful due to the poor water solubility of chemodrugs, short blood circulation time, instability and off-target 
effect [416]. The concepts for targeting at cancer stem cells (CSCs) by functionalized nanoparticles were schematically presented in 
Fig. 10. A nano drug delivery system targeting at BCSCs could specifically carry anti-BCSCs drugs to BCSCs without having off-target 
effect. At present, polymeric nanoparticles (PNPs), liposomes and micelles have attracted great attention from researchers [417,418]. 
A nano drug delivery system usually consists of three parts, namely, core materials, therapeutic drugs and surface ligands. 

Fig. 10. (a) Targeting of cancer stem cells (CSCs) by functionalized nanoparticles. (b) Cellular targets: (i) cell surface biomarkers, (ii) drug efflux 
pumps, (iii) metabolism, (iv) cell signaling pathways, (v) tumor niche, and (vi) bulk cancer cells. Abbreviation: shRNA, short hairpin RNA. Modified 
and reprinted from ref. [90]. Reproduction with permission from Elsevier. Copyright © 2017, Elsevier Ltd. 

Table 9 
Clinical trials related to applications of nanoparticle delivery systems for targeted TNBC treatment.  

Entry NCT number Title Drug with 
nanoparticle 

Status Study type Phase Ref. 

1 NCT03719326 A Study to Evaluate Safety/Tolerability of 
Immunotherapy Combinations in Participants with 
Triple-Negative Breast Cancer and Gynecologic 
Malignancies 

Albumin/ paclitaxel 
bound NP 

Recruiting Interventional Phase 
1 

[503] 

2 NCT01525966 Carboplatin and Paclitaxel Albumin- Stabilized 
Nanoparticle Formulation Before Surgery in Treating 
Patients with Locally Advanced or Inflammatory 
Triple Negative Breast Cancer 

Paclitaxel/ albumin- 
stabilized NP 
formulation 

Active, not 
recruiting 

Interventional Phase 
2 

[504] 

3 NCT00733408 Nab-Paclitaxel and Bevacizumab Followed by 
Bevacizumab and Erlotinib in Metastatic Breast 
Cancer 

Paclitaxel/ albumin- 
stabilized NP 
formulation 

Completed Interventional Phase 
2 

[505]  
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4. Clinical trials using nanoparticles to treat TNBC 

In the targeted therapy of TNBC, many clinical trials have been reported to adopt nanoparticles to deliver genes/drugs to treat 
TNBC. Some reports have already made initial progress. Recent clinical trials related to clinical applications of nanoparticle delivery 
systems for targeted TNBC treatment were summarized in the Table 9. 

Albumin-bound paclitaxel (nab-PTX) nanoparticle has been reported to be highly effective and toxic towards TNBC cancer cells as 
compared to free Cremophor-based Taxol, and achieved high pathological complete response (pCR) rates in patients with TNBCs [419- 
421]. Futamura et al. conducted a phase II clinical trial, evaluating the safety and efficacy of preoperative neoadjuvant chemotherapy 
(NAC) with nab-PTX, followed by an epirubicin plus cyclophosphamide (EC)-based regimen for operable breast cancer [422]. Four 
cycles of every-3-week (q3w) nab-PTX [plus q3w trastuzumab in cases of human epidermal growth factor 2 (HER2) positivity, followed 
by four cycles of q3w EC, were administered to patients with operable breast cancer (stage IC–IIIA). The primary endpoint was the pCR 
rate (ypT0/TisypN0). A total of 55 patients were enrolled, all of them underwent NAC plus radical surgery. The overall pCR rate was 
22.2% (p = 0.006). The pCR rates for patients with TNBC, HER2-rich, luminal/HER2, and luminal B breast cancer molecular subtypes, 
were 15.4%, 60%, 29.4%, and 10.5%, respectively [423]. The expression of secreted proteins being acidic and rich in cysteine, showed 
no association with pCR. The clinical response rate was 70.4% (38/54), and the safety profile was tolerable. Although sensory neu-
ropathy, arthralgia, and myalgia were common AEs after nab-PTX therapy, they were tolerable and could be resolved by the end of 
NAC [423]. This clinical trial demonstrated the necessity of a novel pre-operative NAC regimen before sequential treatments by nab- 
PTX (plus TZ in HER2-positive patients) and then EC. This regimen using nanoparticle delivery system appears to be an effective 
alternative for NAC in TNBC patients. Similarly, in an earlier study, Mrózek et al. conducted a Phase II trial of neoadjuvant adopting 
weekly drug administration of albumin-bound paclitaxel nanoparticle, carboplatin, and biweekly bevacizumab therapy in women with 
clinical stage II or III HER2-negative breast cancer [424]. A total of 33 female patients were enrolled. Six patients (18%) achieved pCR. 
All pCRs occurred in TNBC (pCR = 50% for TNBC). At the end of the cycle 2, the changes in relative angiogenic volumes were 
significantly different between responders and non-responders (P = 0.001) [425]. The major toxicity of this NCT was myelosup-
pression. So, we could see from this trail that NCT with weekly drug administration of nab-PTX, carboplatin, and biweekly bev-
acizumab resulted in a pCR rate that was neither superior to the historical data with anthracycline- or taxane-containing NCT, nor to 
carboplatin and taxane combinations in patients with TNBC [425]. Apart from that, Symonds L et al. conducted a Phase II clinical trial 
of nab-paclitaxel and bevacizumab, followed by maintenance therapy with erlotinib and bevacizumab for patients with metastatic 
TNBC. A total of 55 evaluable patients were enrolled. The median PFS and OS for the cohort was 9.1 months (95% CI, 7.2–11.1) and 
18.1 months (95% CI, 15.6–21.7), respectively. Among the 53 patients with measurable disease, 39 (74%) had experienced a partial 
response; and 10 (19%) had stable disease. The most common toxicity of this trial was uncomplicated neutropenia. In another words, 
this clinical trial resulted in PFS similar to that of other trials, providing a promising break from cytotoxic chemotherapy for TNBC 
patients [426]. Additionally, Gluz O and his colleague conducted a randomized WSG-ADAPT-TN trial to compare carboplatin vs. 
gemcitabine with a nab-paclitaxel backbone with a focus on early response. A total of 336 patients were enrolled. pCR favored nab- 
paclitaxel/carboplatin group (28.7% vs 45.9%, 95% CI (dBA) = 6.2% to 27.9%, P = 0.002), and was lower in non-responders than in 
early responders (19.5% vs 44.4%, P < 0.001). This randomized trial suggested an excellent tolerability, high efficacy, and a 

Table 10 
Applications of nanoparticle delivery systems in the treatment of TNBC.  

Therapeutic drug Drug delivery 
system 

Mechanism Therapeutic outcome Ref. 

Dual receptor tyrosine 
kinase inhibitor 
ZD6474 

ZD6474-AuNP Inhibit tumor cell proliferation, migration, invasion and 
induce apoptosis 

Reduced tumor volume [506] 

Cisplatin and docetaxel NACLAT1-AuNP Kill tumor cells by photothermal ablation Reduced tumor recurrence and 
metastasis 

[507] 

5-Fu 5-Fu-AuNP Increase the expression of mitogen activated protein kinase 
phosphatase 1 and histone H3, and decrease the expression 
of thymidylate synthetase 

Increase the sensitivity of tumor 
cells to 5-FU and induce tumor cell 
death 

[508] 

Pd[DMBil1]-PEG750 Photosensitizer- 
silica core-NP 

Produce strong active oxygen, oxidize and damage tumor 
cells 

Induce TNBC cell death non- 
invasively 

[509] 

DOX DOX-LDGI-NP Enhance the penetration ability of drugs in tumor area and 
promote the apoptosis of tumor cells 

Superior effect of synergistic 
therapy than that of drug therapy 
alone 

[510] 

miRNA-34a miRNA34a-LBL- 
AuNP 

Inhibit the expression of tumor proliferation genes SIRT1 
and Bcl-2, and effectively inhibit the proliferation of tumor 
cells 

Tumor cell proliferation decreased 
by 33% 

[511] 

miRNA-708 miRNA708-AuNP Target at tumor cell clone with miRNA 708 low expression, 
inhibit tumor metastasis 

Decreased lung metastasis of 
TNBC 

[433] 

Abbreviations: 5-FU: 5-fluorouracil; Pd[DMBil1]-PEG750: palladium 10,10-dimethyl-5,15-bis (pentafluorophenyl) biladiene-based photosensitizer; 
ZD6474-AuNP: dual receptor tyrosine kinase inhibitor-amphiphilic copolymer-gold nanoparticles; NACLAT1-AuNP: neutral amino acid transporter 1- 
gold nanoparticles; Fu-AUNP: fluorouracil-gold nanoparticles; DOX-LDGI-NP: doxorubicin-gold nanoparticles-iron oxide plasma magnetic hybrid 
nanoparticles; miR34a-LBL-AuNP: microRNA34a layer assembled gold nanoparticles; miR708-AuNP: microRNA708 layer-by-layer assembled gold 
nanoparticles. 
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neoadjuvant nab-paclitaxel/carboplatin regimen, superior to nab-paclitaxel/gemcitabine in patients with TNBC [427]. 

5. Conclusion and perspective 

TNBC is considered highly aggressive because of its strong diversity, the difficulty to classify the aggressiveness, and the poor 
prognosis. For the detection of TNBC, Véronique Baud et, al. found a new biomarker for diagnosing TNBC: a new antibody which can 
specifically target RelB phosphorylation through the NF-κB signaling pathway to facilitate the diagnosis of TNBC and predict its 
aggressiveness [428]. For the treatment of TNBC, nanoparticles could be surface-modified with TNBC-targeting probe and used to co- 
deliver various kinds of chemodrugs and biologically active species, such as proliferation signaling pathway key enzyme inhibitor 
ZD6474 [429], cisplatin/docetaxel [430], 5-fluorouracil [431], Pd[DMBil1]-PEG750 photosensitizer [432], tumor proliferation 
inhibiting genes miRNA-708 and miRNA-34a [433,434], etc, and achieve synergistic TNBC-targeting and therapeutic effects, which 
are difficult to achieve using individual payload component alone. By using nanoparticle delivery systems, it becomes possible to 
effectively inhibit tumor proliferation and metastasis via various approaches and mechanisms (see Table 10), and effectively suppress 
the growth, metastasis and recurrence of tumor cells and their drug-resistant clone cells. The significance of using nanoparticle de-
livery systems to exert tumor-targeting therapy for the treatment of TNBC is mainly reflected in the following aspects: 1) when 
combined with chemotherapy drugs, photothermal therapy could inhibit and kill TNBC cells in many ways, especially the removal of 
tumor stem cells, which is expected to mitigate or solve the problem of tumor proliferation, metastasis and recurrence. 2) The com-
bination of gene therapy and nanotechnology promotes the precision and intelligence of TNBC treatment significantly. 3) A nano 
delivery system can make it possible to combine immunotherapy and chemotherapy, which can effectively control tumor angiogenesis 
and inhibit infiltration of normal tissue. 4) With the abilities to target at tumor sites, nanoparticle delivery systems could achieve high 
selectivity, good histocompatibility and low cytotoxicity to normal tissues/organs. 

The key features of nanoparticle delivery systems distinctly different from molecular drugs are their tumor-targeting ability and 
massive multidrug/gene co-delivery ability. The development of nano delivery systems presents a completely different way of drug 
designs and usages. In conventional molecular drug design and discovery, the main focus is to search for molecular drugs with 
structures to achieve large affinity differences between normal human enzymes/proteins and those of bacteria/virus/cancer cells, so as 
to reduce the unwanted adverse effects. The extent of adverse effects in molecular drugs is significantly determined by how large the 
affinity differences between the to-be-treated species and the normal tissues. The larger the affinity differences, the smaller the un-
wanted side effects. Whereas in the nanoparticle delivery systems, the main challenge switches from searching drugs with large affinity 
differences to the precision of tumor site- (or to-be treated species-) targeting. In general, cancer cells (as well as bacteria/virus) have 
some specific overexpressed receptors on the surface of their cellular membranes, whereas normal human cells have very few the same 
types of receptors on their membrane surface. With precise targeting using the cancer cell receptor-specific binding probes, a nano 
delivery system can carry multi-toxic drugs to diseased sites with very low off-target adverse effects to normal tissues. By using 
nanoparticle delivery carriers with precise tumor-targeting, those otherwise “bad” chemodrugs with poor water solubility or strong 
adverse effects now can be re-used to treat diseases and cancers. Currently, it was not yet observed or reported that cancer cells (and 
bacteria) are able to pump nanomedicines out of cancer cells and create resistance to nanomedicines. Therefore, nano delivery systems 
provide an alternative route to overcome the tough drug resistance problem commonly encountered in clinic treatment of TNBC and 
other cancers using conventional molecular chemodrugs alone. 

5.1. The future development of nanoparticle-based nanomedicines 

Although having the above-mentioned unique features, nanoparticle delivery systems, however, have their own problems and 
shortcomings, which are awaiting to be conquered in the future. Firstly, in the aspect of drug release from nanocarriers, there is a need 
to overcome the interference of tumor microenvironments, and other problems, such as limited tumor tissue permeation, local osmotic 
pressure barrier of tumor tissues, charge barrier from cancer cell membranes, and the increasingly serious drug-resistant clone of 
heterogeneous tumor cells for nano delivery systems to play a role [435,436]. Secondly, nanomaterials are featured by low and unclear 
metabolism pathways in vivo, nonlinear drug metabolism, unwanted distribution in some major organs (via splenic and hepatic 
macrophage clearance), etc., which bring new challenges to the study of pharmacokinetics and toxicokinetic of nanomedicines. How to 
avoid splenic and hepatic macrophage clearance, accumulation and thus cytotoxicity of nanomedicines to major organs is one of the 
major challenges in the future development and clinical applications of nano delivery systems. Thirdly, the interactions with biological 
species (such as, blood, proteins, immune cells, tissues, etc), the long-term cytotoxicities and metabolism pathways of nanomaterials 
reported up-to-date were rarely investigated and evaluated. These issues have to be resolved before nanomedicines can be widely and 
safely applied in real world clinical treatments of TNBC and other human cancers. Despite many the above-mentioned issues have not 
been resolved, some patients may still benefit from the use of nanomedicines, especially those suffering from severe adverse side effects 
of conventional chemodrugs, and the absence of effective treatment modalities, and are facing the threat of immediate or short-term 
deaths. Being able to extend life span and kill cancer cells effectively has a higher priority than considering the long term cytotoxicities 
of nanomedicines. With continuous improvement and further research on the in vivo metabolisms of nanomaterials and in-depth 
research on targeting at TNBC, a comprehensive targeted nano delivery system integrating diagnosis probes, imaging contrast re-
agents, and multi-therapies (such as gene therapy, photothermal therapy, medicinal chemotherapy and immunotherapy), will be able 
to provide more diverse, more efficient, more accurate and more intelligent strategies for the clinical treatment of TNBC. 
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